Light sources based on inverse Compton scattering: a review and perspectives
-
摘要: 康普顿散射是光子与电子之间发生散射的基本物理过程。基于其逆过程的逆康普顿散射光源,通过让相对论电子束与强激光束对撞,可产生高亮度、能量可调、短脉冲的X射线或伽马射线,为诸多科学研究与应用领域提供了高亮度、宽谱光子束。本文将综述逆康普顿散射光源的技术现状及应用,其技术演进可大致分为三个阶段:第一阶段为非相干逆康普顿散射光源技术,已成为目前绝大多数康普顿光源装置所采用的技术。第二阶段为相干逆康普顿散射光源技术,其核心原理是通过电子与光子的相干散射,以显著提升光源峰值亮度和束流品质,该技术目前正在研究发展中。第三阶段为受激逆康普顿散射光源技术,即通过受激辐射放大机制,实现光子与电子散射强度的非线性增强,以产生更高亮度、更高束流品质的技术。本文将分析总结各阶段的技术原理、核心步骤和挑战,并对领域的未来的发展方向进行了展望。Abstract: Inverse Compton Scattering (ICS) is a fundamental physical process involving energy exchange between photons and electrons. ICS light sources, generated by collision between relativistic electron beams and intense laser pulses, offer high-brightness, energy-tunable, and short-pulsed X-rays or gamma-rays, which are supporting diverse scientific research and applications world wide today. This paper aims to review the current technological status and future development prospects of ICS light sources, which are categorized into three evolutionary phases. The first phase, Incoherent Inverse Compton Scattering (InICS), is the mature foundational technology for most existing ICS light sources and has been widely applied in various fields. The second phase, Coherent Inverse Compton Scattering (CoICS), enhances radiation brightness and beam quality through coherent interactions between electron and photon beams, with key technical approaches including periodic photon structures and periodic electron structures. The third phase, Stimulated Inverse Compton Scattering (StICS), achieves nonlinear enhancement of scattering intensity via stimulated emission amplification, analogous to free-electron lasers (FEL), and holds promise for ultra-high brightness radiation. In this paper, a systematic analysis of the principles, key steps, and technical challenges of each phase will be provided. Furthermore, numerical simulations demonstrate that periodic electron structures induced by optical fields can achieve significant coherent enhancement, producing high-quality beams with smaller energy spread and angular divergence. It is envisioned that with advancements in high-intensity short-pulse laser technology, Flying Focus, and high-current short-pulse electron acceleration, CoICS and StICS are expected to develop rapidly, providing superior brightness and beam quality in the ultraviolet to soft X-ray bands, and opening new avenues for related scientific research and industrial applications.
-
图 1 电子与光子相互作用的费曼图。在微观时序上,电子可以先吸收一个光子,再放出一个末态光子(a); 或者先放出末态光子,再吸收初态光子(b)。
Figure 1. Feynman diagram of electron-photon interaction. In terms of microscopic temporal sequence, the electron can either first absorb a photon and then emit a final-state photon (a), or first emit the final-state photon and then absorb the initial photon (b)
图 3 飞行焦点示意图。该图展示了同一激光脉冲在不同时刻穿过透镜的过程。(左)在 t1时刻,脉冲前沿(低频红光分量)首先到达,汇聚于焦轴近端;(右)在t2时刻,脉冲后沿(高频蓝光分量)随后到达,汇聚于焦轴远端。由于焦点随时间从近端向远端移动,在实验室坐标系中形成了一个正向移动(向右)的飞行焦点。
Figure 3. A schematic diagram of the flying focus. This illustration depicts the same laser pulse passing through a lens at different time instances. (Left) At time t1, the leading edge of the pulse (the red-shifted, lower-frequency component) arrives first and is focused onto a near position along the focal axis. (Right) At a later time t2, the trailing edge of the pulse (the blue-shifted, higher-frequency component) arrives subsequently and is focused onto a far position along the same axis. As the focus moves continuously from the near to the far position over time, a forward-propagating (to the right) flying focus is effectively formed in the laboratory frame of reference
图 6 (a)与涡旋光作用后电子三维空间分布
$ {\rho }_{e}(r) $ ;(b)公式6定义的相干增强因子$ \eta (\boldsymbol{q}) $ 三维分布图;(c)相干增强因子$ \eta ({E}_{{{\gamma }^{\prime}}},{\theta }_{q}) $ 分布图Figure 6. (a) Three-dimensional spatial distribution of electrons
$ {\rho }_{e}(r) $ after interaction with the vortex laser. (b) Three-dimensional distribution of the coherent enhancement factor$ \eta (\boldsymbol{q}) $ defined by equation 6 . (c) Distribution of the coherent enhancement factor$ \eta ({E}_{{{\gamma }^{\prime}}},{\theta }_{q}) $ 表 1 逆康普顿散射的分类
Table 1. Classification of inverse Compton scattering
coherence linearity Incoherent Inverse Compton Scattering No Yes Coherent Inverse Compton Scattering Yes Yes Stimulated Inverse Compton Scattering Yes No 表 2 不同ICS光源的参数对比
Table 2. A parameter comparison of different ICS light sources
Device Energy range of scattered photons (eV) Energy spread (%) Repetition rate (Hz) Photon flux (ph/s) SSRF/SLEGS[33] 0.25–21.1 M 2–15 CW 105–8 SPRing-8 /LEPS[17] 1.3–2.9 G 0.5–2 CW 105–7 MuCLS[34] 15–35k 3–5 64.91 M 1010 STAR[14] 40–140 k <10 100 M 1010 BriXS[14] 20–180 k 1–10 100 1011–13 注:具体参数依赖于运行模式,LUXE为强场物理实验装置,重点在于峰值场强而非平均通量,故未列出。 表 3 传统磁铁振荡器与激光振荡器的对比
Table 3. A Comparison Between Traditional Magnetic Undulators and Laser Undulators
Features Traditional Undulator Laser Undulator Resonant wavelength $ \dfrac{{\lambda }_{u}}{2{\gamma }^{2}}\left(1+\dfrac{{K}^{2}}{2}\right) $ $ \dfrac{{\lambda }_{L}/2}{2{\gamma }^{2}}\left(1+\dfrac{a_{0}^{2}}{2}\right) $ Source of undulator period Fixed magnetic pole arrangement Laser wavelength Tunability Controlled by $ K,{\lambda }_{u} $ Controlled by $ {a}_{0},{\lambda }_{L} $ Output wavelength X-rays Extreme ultraviolet/soft X-rays -
[1] Compton A H. A general quantum theory of the wave-length of scattered X-rays[J]. Physical Review, 1924, 24(2): 168-176. doi: 10.1103/PhysRev.24.168 [2] Compton A H. The spectrum of scattered X-rays[J]. Physical Review, 1923, 22(5): 409-413. doi: 10.1103/PhysRev.22.409 [3] Arons A B, Peppard M B. Einstein’s proposal of the photon concept—a translation of the annalen der physik paper of 1905[J]. American Journal of Physics, 1965, 33(5): 367-374. doi: 10.1119/1.1971542 [4] Henriksen E K, Angell C, Vistnes A I, et al. What is light? Students’ reflections on the wave-particle duality of light and the nature of physics[J]. Science & Education, 2018, 27(1/2): 81-111. [5] HENDRY J. The development of attitudes to the wave-particle duality of light and quantum theory, 1900–1920[J]. Annals of science, 1980, 37(1): 59-79. doi: 10.1080/00033798000200121 [6] Dimitrova T L, Weis A. The wave-particle duality of light: a demonstration experiment[J]. American Journal of Physics, 2008, 76(2): 137-142. doi: 10.1119/1.2815364 [7] Evans R D. Compton effect[M]//Flügge S. Corpuscles and Radiation in Matter II/Korpuskeln und Strahlung in Materie II. Berlin: Springer, 1958: 218-298. [8] Jones F C. Calculated spectrum of inverse-compton-scattered photons[J]. Physical Review, 1968, 167(5): 1159-1169. doi: 10.1103/PhysRev.167.1159 [9] Jones F C. Inverse Compton scattering of cosmic-ray electrons[J]. Physical Review, 1965, 137(5B): B1306-B1311. doi: 10.1103/PhysRev.137.B1306 [10] Blumenthal G R, Gould R J. Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases[J]. Reviews of Modern Physics, 1970, 42(2): 237-270. doi: 10.1103/RevModPhys.42.237 [11] Boucher S, Frigola P, Murokh A, et al. Inverse compton scattering gamma ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(Suppl 1): S54-S56. [12] Graves W S, Bessuille J, Brown P, et al. Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz[J]. Physical Review Special Topics-Accelerators and Beams, 2014, 17: 120701. doi: 10.1103/PhysRevSTAB.17.120701 [13] Chen Shouyuan, Powers N D, Ghebregziabher I, et al. MeV-energy X rays from inverse Compton scattering with laser-wakefield accelerated electrons[J]. Physical Review Letters, 2013, 110: 155003. doi: 10.1103/PhysRevLett.110.155003 [14] Faillace L, Agostino R G, Bacci A, et al. Status of compact inverse Compton sources in Italy: BriXS and STAR[C]//Proceedings of SPIE 11110, Advances in Laboratory-based X-Ray Sources, Optics, and Applications VII. 2019: 1111005. [15] Borysova M. Studies of high-field QED with the LUXE experiment at the European XFEL[J]. Journal of Instrumentation, 2021, 16: C12030. doi: 10.1088/1748-0221/16/12/C12030 [16] Huang Juanjuan, Günther B, Achterhold K, et al. Energy-dispersive X-ray absorption spectroscopy with an inverse Compton source[J]. Scientific Reports, 2020, 10(1): 8772. doi: 10.1038/s41598-020-65225-4 [17] Muramatsu N, Kon Y, Daté S, et al. Development of high intensity laser-electron photon beams up to 2.9 GeV at the SPring-8 LEPS beamline[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 737: 184-194. doi: 10.1016/j.nima.2013.11.039 [18] Wang Hongwei, Fang Gongtao, Shen Wenqing, et al. SLEGS: the first photonuclear reaction research platform in China[J]. Nuclear Physics News, 2023, 33(4): 17-22. doi: 10.1080/10619127.2023.2230858 [19] Xu Hanghua, Fan G T, Wang Hongwei, et al. Interaction chamber for laser Compton slant-scattering in SLEGS beamline at Shanghai Light Source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1033: 166742. doi: 10.1016/j.nima.2022.166742 [20] Liu Longxiang, Wang Hongwei, Fan Gongtao, et al. The SLEGS beamline of SSRF[J]. Nuclear Science and Techniques, 2024, 35(7): 111. doi: 10.1007/s41365-024-01469-3 [21] Saldin E L, Schneidmiller E V, Yurkov M V. The physics of free electron lasers[M]. Berlin: Springer, 2012. [22] Fisher A, Park Y, Lenz M, et al. Single-pass high-efficiency terahertz free-electron laser[J]. Nature Photonics, 2022, 16(6): 441-447. doi: 10.1038/s41566-022-00995-z [23] Mcneil B W J, Thompson N R. X-ray free-electron lasers[J]. Nature Photonics, 2010, 4(12): 814-821. doi: 10.1038/nphoton.2010.239 [24] O’Shea P G, Freund H P. Free-electron lasers: status and applications[J]. Science, 2001, 292(5523): 1853-1858. doi: 10.1126/science.1055718 [25] Galayda J N. The LCLS-II: a high power upgrade to the LCLS[C]//9th International Particle Accelerator Conference. 2018: 18-23. [26] Cooper M, Mijnarends P, Shiotani N, et al. X-ray Compton scattering[M]. Oxford: Oxford University Press, 2004. [27] Kulpe S, Dierolf M, Günther B, et al. Spectroscopic imaging at compact inverse Compton X-ray sources[J]. Physica Medica, 2020, 79: 137-144. doi: 10.1016/j.ejmp.2020.11.015 [28] Ma Yue, Liu Dexiang, Hua Jianfei, et al. Dual-energy micro-focus computed tomography based on the energy-angle correlation of inverse Compton scattering source[J]. Journal of X-Ray Science and Technology, 2023, 31(6): 1227-1243. doi: 10.3233/xst-230093 [29] Wu Huangkai, Wang Xiyang, Wang Yumiao, et al. Fudan multi-purpose active target time projection chamber (fMeta-TPC) for photonuclear reaction experiments[J]. Nuclear Science and Techniques, 2024, 35: 200. doi: 10.1007/s41365-024-01576-1 [30] Krämer J M, Jochmann A, Budde M, et al. Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications[J]. Scientific Reports, 2018, 8: 1398. doi: 10.1038/s41598-018-19546-0 [31] Brümmer T, Bohlen S, Grüner F, et al. Compact all-optical precision-tunable narrowband hard Compton X-ray source[J]. Scientific Reports, 2022, 12: 16017. doi: 10.1038/s41598-022-20283-8 [32] Gu Yuning, Zhao Weijuan, Cao Xiguang, et al. Feasibility study of the photonuclear reaction cross section of medical radioisotopes using a laser Compton scattering gamma source[J]. Nuclear Science and Techniques, 2024, 35(9): 155. doi: 10.1007/s41365-024-01481-7 [33] Wang Hongwei, Fan Gongtao, Liu Longxiang, et al. Commissioning of laser electron gamma beamline SLEGS at SSRF[J]. Nuclear Science and Techniques, 2022, 33: 87. doi: 10.1007/s41365-022-01076-0 [34] Günther B, Gradl R, Jud C, et al. The versatile X-ray beamline of the Munich Compact Light Source: design, instrumentation and applications[J]. Journal of Synchrotron Radiation, 2020, 27(5): 1395-1414. doi: 10.1107/S1600577520008309 [35] MESSIAH A. Quantum mechanics[M]. Mineola, New York: Dover Publications, 2014. [36] Joannopoulos J D, Villeneuve P R, Fan Shanhui. Photonic crystals[J]. Solid State Communications, 1997, 102(2/3): 165-173. [37] Deng Xiujie, Chao A, Feikes J, et al. Experimental demonstration of the mechanism of steady-state microbunching[J]. Nature, 2021, 590(7847): 576-579. doi: 10.1038/s41586-021-03203-0 [38] Jackson J D. Classical electrodynamics[M]. 3rd ed. New York: Wiley, 1998. [39] Luccio A, Matone G, Miceli L, et al. Coherent backscattering in the soft X-ray region[J]. Laser and Particle Beams, 1990, 8(3): 383-398. doi: 10.1017/S0263034600008636 [40] Luccio A, Miceli L. Coherent compton x-ray sources[J]. Journal of X-Ray Science and Technology, 1994, 4(4): 247-262. doi: 10.1016/s0895-3996(05)80043-6 [41] Giordano G, Matone G, Luccio A, et al. Coherence in Compton scattering at large angles[J]. Laser and Particle Beams, 1997, 15(1): 167-177. doi: 10.1017/S0263034600010867 [42] Zhao Kai, Fu Changbo, Kong Xiangjin, et al. Coherent Compton scattering using a stretched off-axis paraboloid[J]. Nuclear Science and Techniques, 2025, 36: 156. doi: 10.1007/s41365-025-01755-8 [43] Kunzl T, Lesch H, Jessner A. On beaming due to coherent inverse Compton scattering[DB/OL]. arXiv preprint arXiv: astro-ph/9808114, 1998. [44] Zhang Bing. Coherent inverse Compton scattering by bunches in fast radio bursts[J]. The Astrophysical Journal, 2022, 925: 53. doi: 10.3847/1538-4357/ac3979 [45] Qu Yuanhong, Zhang Bing. Coherent inverse Compton scattering in fast radio bursts revisited[J]. The Astrophysical Journal, 2024, 972: 124. doi: 10.3847/1538-4357/ad5d5b [46] Kapitza P L, Dirac P A M. The reflection of electrons from standing light waves[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1933, 29(2): 297-300. doi: 10.1016/b978-0-08-010744-8.50036-1 [47] Palastro J P, Shaw J L, Franke P, et al. Dephasingless laser wakefield acceleration[J]. Physical Review Letters, 2020, 124: 134802. doi: 10.1103/PhysRevLett.124.134802 [48] Froula D H, Turnbull D, Davies A S, et al. Spatiotemporal control of laser intensity[J]. Nature Photonics, 2018, 12(5): 262-265. doi: 10.1038/s41566-018-0121-8 [49] Howard A J, Turnbull D, Davies A S, et al. Photon acceleration in a flying focus[J]. Physical Review Letters, 2019, 123: 124801. doi: 10.1103/PhysRevLett.123.124801 [50] Ramsey D, Malaca B, Simpson T T, et al. X-ray free-electron lasing in a flying-focus undulator[J]. Communications Physics, 2025, 8: 113. doi: 10.1038/s42005-025-02028-x [51] Pigeon J J, Franke P, Lim Pac Chong M, et al. Ultrabroadband flying-focus using an axiparabola-echelon pair[J]. Optics Express, 2024, 32(1): 576-585. doi: 10.1364/OE.506112 [52] PALASTRO J, TURNBULL D, BAHK S W, 等. Ionization waves of arbitrary velocity driven by a flying focus[J]. Physical Review A, 2018, 97(3): 033835. [53] Turnbull D, Bahk S W, Begishev I A, et al. Flying focus and its application to plasma-based laser amplifiers[J]. Plasma Physics and Controlled Fusion, 2019, 61: 014022. doi: 10.1088/1361-6587/aada63 [54] Jolly S W, Gobert O, Jeandet A, et al. Controlling the velocity of a femtosecond laser pulse using refractive lenses[J]. Optics Express, 2020, 28(4): 4888-4897. doi: 10.1364/OE.384512 [55] Lugovoi V N, Manenkov A A. Multi-focus structure and moving nonlinear foci: adequate models of self-focusing of laser beams in nonlinear media[M]//Boyd R W, Lukishova S G, Shen Y R. Self-focusing: Past and Present: Fundamentals and Prospects. New York: Springer, 2009: 145-155. [56] Mansuryan T, Bagley N, Boulesteix R, et al. Nonlinear flying focus pulses for ultrafast 3D nonlinear microscopy[J]. Optica, 2025, 12(8): 1192-1199. doi: 10.1364/OPTICA.561661 [57] Bagley N, Wehbi S, Mansuryan T, et al. Concatenation of Kerr solitary waves in ceramic YAG: application to coherent Raman imaging[J]. Optics Letters, 2025, 50(2): 427-430. doi: 10.1364/OL.543232 [58] Ghasemi A, Mirzanejhad S, Mohsenpour T. Flying focus laser wake field acceleration by donut shape pulse[J]. Applied Physics B, 2024, 130: 105. doi: 10.1007/s00340-024-08236-7 [59] Jiang Xiaoming, Tang Esheng, Xian Dingchang. Beijing synchrotron radiation facility[J]. Review of Scientific Instruments, 1995, 66(2): 2343-2348. doi: 10.1063/1.1145684 [60] Jiang Mianheng, Yang Xiong, Xu Hongjie, et al. Shanghai synchrotron radiation facility[J]. Chinese Science Bulletin, 2009, 54(22): 4171-4181. doi: 10.1007/s11434-009-0689-y [61] Rosenzweig J B. Fundamentals of beam physics[M]. Oxford: Oxford University Press, 2003. [62] Chao A W, Tigner M, Weise H, et al. Handbook of accelerator physics and engineering[M]. 3rd ed. Hackensack: World Scientific, 2023: 1-64. [63] Ratner D F, Chao A W. Steady-state microbunching in a storage ring for generating coherent radiation[J]. Physical Review Letters, 2010, 105: 154801. doi: 10.1103/PhysRevLett.105.154801 [64] Khan S. Ultrashort high-brightness pulses from storage rings[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 865: 95-98. doi: 10.1016/j.nima.2016.07.048 [65] Tang Chuanxiang, Deng Xiujie, Huang Wenhui, et al. An overview of the progress on SSMB[C]//60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. 2018: 166-170. [66] Kruschinski A, Deng Xiujie, Feikes J, et al. Confirming the theoretical foundation of steady-state microbunching[J]. Communications Physics, 2024, 7: 160. doi: 10.1038/s42005-024-01657-y [67] Gilmour A S Jr. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. Boston: Artech House, 2011. [68] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185 [69] He H, Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Physical Review Letters, 1995, 75(5): 826-829. doi: 10.1103/PhysRevLett.75.826 [70] Lax M, Louisell W H, Mcknight W B. From Maxwell to paraxial wave optics[J]. Physical Review A, 1975, 11(4): 1365-1370. doi: 10.1103/physreva.11.1365 [71] Molnár E, Stutman D. Direct laser-driven electron acceleration and energy gain in helical beams[J]. Laser and Particle Beams, 2021, 2021: e11. doi: 10.1155/2021/6645668 [72] Chen Yueyue, Hatsagortsyan K Z, Keitel C H. Generation of twisted γ-ray radiation by nonlinear Thomson scattering of twisted light[J]. Matter and Radiation at Extremes, 2019, 4: 024401. doi: 10.1063/1.5086347 [73] Pae K H, Song H, Ryu C M, et al. Low-divergence relativistic proton jet from a thin solid target driven by an ultra-intense circularly polarized Laguerre–Gaussian laser pulse[J]. Plasma Physics and Controlled Fusion, 2020, 62: 055009. doi: 10.1088/1361-6587/ab7d27 [74] Fu Shiyao, Gao Chunqing. Basic characteristics of vortex beams[M]//Fu Shiyao, Gao Chunqing. Optical Vortex Beams: Fundamentals and Techniques. Singapore: Springer, 2023: 41-62. [75] Barros R F, Bej S, Hiekkamäki M, et al. Observation of the topological aberrations of twisted light[J]. Nature Communications, 2024, 15: 8162. doi: 10.1038/s41467-024-52529-6 [76] Nye J F, Berry M V. Dislocations in wave trains[J]. Royal Society of London. A. Mathematical and Physical Sciences, 1974, 336(1605): 165-190. doi: 10.1098/rspa.1974.0012 [77] Berry M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6: 259. doi: 10.1088/1464-4258/6/2/018 [78] Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. Boca Raton: CRC Press, 2018. [79] Yu L H, Babzien M, Ben-Zvi I, et al. High-gain harmonic-generation free-electron laser[J]. Science, 2000, 289(5481): 932-934. doi: 10.1126/science.289.5481.932 [80] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176 [81] Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520. doi: 10.1038/s41586-021-03678-x [82] Franz P, Li Siqi, Driver T, et al. Terawatt-scale attosecond X-ray pulses from a cascaded superradiant free-electron laser[J]. Nature Photonics, 2024, 18(7): 698-703. doi: 10.1038/s41566-024-01427-w [83] Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6(10): 699-704. doi: 10.1038/nphoton.2012.233 [84] White W E, Robert A, Dunne M. The Linac Coherent Light Source[J]. Journal of Synchrotron Radiation, 2015, 22(3): 472-476. doi: 10.1107/S1600577515005196 [85] Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 2020, 14(6): 391-397. doi: 10.1038/s41566-020-0607-z [86] Liu Tao, Huang Nanshun, Yang Hanxiang, et al. Status and future of the soft X-ray free-electron laser beamline at the SHINE[J]. Frontiers in Physics, 2023, 11: 1172368. doi: 10.3389/fphy.2023.1172368 [87] Coquelle N, Sliwa M, Woodhouse J, et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography[J]. Nature Chemistry, 2018, 10(1): 31-37. doi: 10.1038/nchem.2853 [88] Mara M W, Hadt R G, Reinhard M E, et al. Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy[J]. Science, 2017, 356(6344): 1276-1280. doi: 10.1126/science.aam6203 [89] Milathianaki D, Boutet S, Williams G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter[J]. Science, 2013, 342(6155): 220-223. doi: 10.1126/science.1239566 [90] Wang Xiaofan, Feng Chao, Faatz B, et al. High-repetition-rate seeded free-electron laser with direct-amplification of an external coherent laser[J]. New Journal of Physics, 2022, 24: 033013. doi: 10.1088/1367-2630/ac5492 [91] Deng Haixiao, Zhang Tong, Feng Lie, et al. Polarization switching demonstration using crossed-planar undulators in a seeded free-electron laser[J]. Physical Review Accelerators and Beams, 2014, 17: 020704. doi: 10.1103/PhysRevSTAB.17.020704 [92] Colson W B, Sessler A M. Free electron lasers[J]. Annual Reviews of Nuclear and Particle Science, 1985, 35: 25. doi: 10.1146/annurev.ns.35.120185.000325 [93] Bonifacio R, Pellegrini C, Narducci L M. Collective instabilities and high-gain regime in a free electron laser[J]. Optics Communications, 1984, 50(6): 373-378. doi: 10.1016/0030-4018(84)90105-6 [94] Huang Zhirong, Kim K J. Review of x-ray free-electron laser theory[J]. Physical Review Special Topics - Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801 -
下载:





