Femtosecond laser-driven ultrafast X-ray dynamics experimental station
-
摘要: 激光等离子体加速的超高电子密度、超微时空结构、超高加速梯度,可产生飞秒(fs)级脉宽、高峰值亮度的实验室级超快光源,非常适宜构筑fs级时间分辨的超快动态诊断能力,可作为传统大型光源的补充和拓展。依托国家重大科技基础设施-综合极端条件实验装置(SECUF),建立了国内首个基于高功率飞秒激光驱动的超短X射线脉冲作为开放资源的用户实验站。激光系统具有两路输出:三太瓦(3 TW: 60 mJ/20 fs/800 nm)重频为100 Hz,拍瓦(PW: 25 J/25 fs/800 nm)每分钟1发。3 TW束可传输至两个靶室,建立了超快X射线衍射应用平台,具备多模式泵浦-探测能力,用于研究物质超快动力学过程;并基于激光等离子体电子加速研制出首个台面化高分辨超热中子共振谱学平台。PW束可传输至三个靶室,支持激光等离子体加速、激光核物理、超快X射线和新型太赫兹辐射产生等前沿研究,及超快脉冲辐射的应用。本实验站既支持利用飞秒激光产生的超快辐射脉冲开展物质科学研究,也支持直接利用高功率激光进行强场物理研究。Abstract:
Background Ultrashort and ultraintense laser-driven plasma X-ray sources offer femtosecond pulse durations, intrinsic spatiotemporal synchronization, compactness, and cost-effectiveness, serving as an important complement to traditional large-scale light sources and providing novel experimental tools for ultrafast dynamics research.Purpose Built upon the Synthetic Extreme Condition Facility (SECUF), the first open-access user experimental station in China based on high-power femtosecond lasers was established to deliver various types of ultrafast radiation sources, supporting studies on ultrafast material dynamics and frontier strong-field physics.Methods The station is equipped with a dual-beam titanium-sapphire laser system (3 TW/100 Hz and PW/1 shot/min) and multiple beamlines with multifunctional target chambers. Through interactions between the laser and solid targets, gas targets, or plasmas, various ultrafast light sources—such as Kα X-rays, Betatron radiation, and inverse Compton scattering—are generated. Platforms for strong-field terahertz pump–X-ray probe (TPXP) experiments and tabletop epithermal neutron resonance spectroscopy have also been developed.Results A highly stable ultrafast X-ray diffraction and TPXP platform was successfully established, enabling direct observation of strong-field terahertz-induced phase transition in VO2. The world’s first tabletop high-resolution epithermal neutron resonance spectroscopy device was developed. On the PW beamline, hundred-millijoule-level intense terahertz radiation, efficient inverse Compton scattering, and high-charge electron beams were achieved.Conclusions Integrating high-performance lasers, diverse radiation sources, and advanced diagnostic platforms, this experimental station provides a flexible and efficient comprehensive facility for ultrafast science, promising to advance ultrafast dynamics research toward broader accessibility and more cutting-edge directions. -
表 1 激光主要参数
Table 1. Main parameters of Lasers
maximum
energy on
targetpulse
duration
(FWHM)/fsrepetition
ratecontrast
ratioenergy
stability
(RSD)/%pointing
stability
(SD)/μradspatial
qualitybeam
aperture/
mmcentral
wavelength/
nm3 TW ~60 mJ 19.1 100 Hz ~1×10−9@ns
~6.6×10−10@-200 ps0.62% ~1.57(θH)
~2.53(θV)M2=1.19 40 800 PW ~25 J ≤25 1 shot/min ~5×10−9@ns
~8.3×10−10@-200 ps2.1% ~0.84(θH)
~2.39(θV)0.9 SR 180 800 表 2 平台性能参数总结
Table 2. Platform Performance Summary
Laser Parameters Central Wavelength 800 nm Pulse duration (FWHM) 20 fs Repetition rate 100 Hz Main laser energy ≤ 60 mJ (on the target) Spot diameter (1/e2) 12.2 μm × 13.6 μm (with~70% energy) X-ray Cu (8.04 keV) Kα yield (ph/2π/s) 8.5×1010 (3W laser) Energy conversion efficiency (2π) ~3.65 × 10−5 X-ray spot size (FWHM) ~320 μm (Gauss distributed) X-ray photon number on sample ~1.2 × 107 phs/s (3W laser) Pointing stability of x-ray focus (SD) H: 16.96 μrad, V: 13.84 μrad Pulse duration <300fs Pump 800 nm / 400 nm / THz / OPA Pump energy < 0.5mJ / <5mJ /~25 μJ / under construction Pump pulse duration < 80fs / < 80fs / < 220fs (~3.34 MV/cm) / - Sample stage Adjustment dimension up to 7 axes adjustable at room temperature Temperature environment −195o C - 600o C (5 axes adjustable) -
[1] Rastogi V, Smith R F, Sims M, et al. Application of ultrafast x-ray lasers in studying the material structure under shock compression[J]. Journal of Applied Physics, 2025, 137: 070702. doi: 10.1063/5.0239330 [2] Li Yutong, Chen Liming, Chen Min, et al. High-intensity lasers and research activities in China[J]. High Power Laser Science and Engineering, 2025, 13: e12. doi: 10.1017/hpl.2024.69 [3] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36 [4] Albert F. Principles and applications of x-ray light sources driven by laser wakefield acceleration[J]. Physics of Plasmas, 2023, 30: 050902. doi: 10.1063/5.0142033 [5] Rathore R, Singhal H, Kulkarni R, et al. Development of ultrashort intense broadband laser-plasma x-ray source for ultrafast Laue x-ray diffraction[J]. Review of Scientific Instruments, 2025, 96: 074902. doi: 10.1063/5.0250567 [6] 中国科学院物理研究所. 飞秒激光驱动的定向超快X射线分幅成像装置及应用: 201910841360.7[P]. 2019-11-15Institute of Physics, Chinese Academy of Sciences. Directional ultrafast X-ray separation imaging device driven by femtosecond laser and application: 201910841360.7[P]. 2019-11-15 [7] Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1 [8] Picksley A, Stackhouse J, Benedetti C, et al. Matched guiding and controlled injection in dark-current-free, 10-GeV-class, channel-guided laser-plasma accelerators[J]. Physical Review Letters, 2024, 133: 255001. doi: 10.1103/PhysRevLett.133.255001 [9] Ziegler T, Göthel I, Assenbaum S, et al. Laser-driven high-energy proton beams from cascaded acceleration regimes[J]. Nature Physics, 2024, 20(7): 1211-1216. doi: 10.1038/s41567-024-02505-0 [10] Liao Guoqian, Liu Hao, Scott G G, et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions[J]. Physical Review X, 2020, 10: 031062. doi: 10.1103/physrevx.10.031062 [11] Zhang Xiaobo, Weng Suming, Ai Hong, et al. Photonic Rabi oscillations in defective plasma photonic crystals[J]. Physical Review Letters, 2025, 135: 015101. doi: 10.1103/k2th-m73q [12] Feng Jie, Wang Wenzhao, Fu Changbo, et al. Femtosecond pumping of nuclear isomeric states by the coulomb collision of ions with quivering electrons[J]. Physical Review Letters, 2022, 128: 052501. doi: 10.1103/PhysRevLett.128.052501 [13] Feng Jie, Qi Jintao, Zhang Hanxu, et al. Laser-based approach to measure small nuclear cross sections in plasma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121: e2413221121. doi: 10.1073/pnas.2413221121 [14] Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001 [15] Winkler P, Trunk M, Hübner L, et al. Active energy compression of a laser-plasma electron beam[J]. Nature, 2025, 640(8060): 907-910. doi: 10.1038/s41586-025-08772-y [16] Barber S K, Kohrell F, Doss C E, et al. Greater than 1000-fold gain in a free-electron laser driven by a laser-plasma accelerator with high reliability[J]. Physical Review Letters, 2025, 135: 055001. doi: 10.1103/vh62-gz1p [17] Hao Chen X-Y Z, Guo-Qian Liao, et al. All-optical table-top strong-field terahertz pump – ultrafast X-ray probe platform[J]. Review of Scientific Instruments, (accepted).. [18] Feng Jie, Ren Jie, Xu Hao, et al. Proof-of-principle demonstration of epithermal neutron resonance spectroscopy utilizing a compact laser-driven electron accelerator[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122: e2518397122. doi: 10.1073/pnas.2518397122 [19] Chen Hao, Liao Guoqian, Wu Hongyuan, et al. Optimized terahertz generation in BNA organic crystals with chirped Ti: sapphire laser pulses[J]. Optics Letters, 2024, 49(18): 5047-5050. doi: 10.1364/OL.533146 [20] Lu W, Nicoul M, Shymanovich U, et al. A modular table-top setup for ultrafast x-ray diffraction[J]. Review of Scientific Instruments, 2024, 95: 013002. doi: 10.1063/5.0181132 [21] Claude R, Puppin M, Weaver B, et al. Shot-to-shot acquisition ultrafast electron diffraction[DB/OL]. arXiv preprint arXiv: 2502.02540, 2025. [22] Hao Xu J F, Zhu Mingyang, Shi Bingzhan, et al. Experimental demonstration of fast neutron absorption spectroscopy with laser-driven neutron source[J]. (under review).. [23] 雷弘毅, 孙方正, 陈浩, 等. 强场太赫兹脉冲波形和频谱的单发测量技术[J]. 中国激光, 2023, 50: 1714001 doi: 10.3788/CJL230790Lei Hongyi, Sun Fangzheng, Chen Hao, et al. Single-shot waveform and spectrum measurement techniques for strong field terahertz pulses[J]. Chinese Journal of Lasers, 2023, 50: 1714001 doi: 10.3788/CJL230790 [24] Ruan J Y, Zhang X Y, Liao G Q, et al. Terawatt-level widely-tunable terahertz bursts from femtosecond laser-irradiated metallic foils[J]. (under review).. [25] Zhu Changqing, Wang Jinguang, Feng Jie, et al. Inverse Compton scattering x-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses[J]. Plasma Physics and Controlled Fusion, 2019, 61: 024001. doi: 10.1088/1361-6587/aaebe3 [26] Chen Siyu, Yan Wenchao, Zhu Mingyang, et al. A platform for all-optical Thomson/Compton scattering with versatile parameters[J]. High Power Laser Science and Engineering, 2025, 13: e56. doi: 10.1017/hpl.2025.36 [27] Hu Xichen, Zhu Mingyang, Xie Pengpei, et al. Enhanced inverse Compton scattering via spontaneous focusing induced by coated plasma mirror[J]. (under review).. [28] Mirzaie M, Hojbota C I, Kim D Y, et al. All-optical nonlinear Compton scattering performed with a multi-petawatt laser[J]. Nature Photonics, 2024, 18(11): 1212-1217. doi: 10.1038/s41566-024-01550-8 [29] Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001 [30] Senthilkumaran V, Beier N F, Fourmaux S, et al. Laser-driven betatron x rays for high-throughput imaging of additively manufactured materials[J]. Rev Sci Instrum, 2024, 95: 123510. doi: 10.1063/5.0221606 [31] Gruse J N, Streeter M J V, Thornton C, et al. Application of compact laser-driven accelerator X-ray sources for industrial imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 983: 164369. doi: 10.1016/j.nima.2020.164369 [32] Cole J M, Symes D R, Lopes N C, et al. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6335-6340. [33] Hussein A E, Senabulya N, Ma Y, et al. Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures[J]. Scientific Reports, 2019, 9: 3249. doi: 10.1038/s41598-019-39845-4 [34] Balcazar M D, Tsai H E, Ostermayr T M, et al. Multi-messenger dynamic imaging of laser-driven shocks in water using a plasma wakefield accelerator[J]. Nature Communications, 2025. [35] Kettle B, Colgan C, Los E E, et al. Extended X-ray absorption spectroscopy using an ultrashort pulse laboratory-scale laser-plasma accelerator[J]. Communications Physics, 2024, 7: 247. doi: 10.1038/s42005-024-01735-1 [36] Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 2016, 6: 27633. doi: 10.1038/srep27633 [37] Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021. [38] Shou Yinren, Wang Pengjie, Lee S G, et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma[J]. Nature Photonics, 2023, 17(2): 137-142. doi: 10.1038/s41566-022-01114-8 [39] Hu Xichen, Zhu Mingyang, Li Yifei, et al. Hundreds of nanocoulomb electron acceleration driven by multipetawatt laser in subcritical density plasmas[J]. Advanced Photonics Research, 2025, 6: 2500056. doi: 10.1002/adpr.202500056 [40] Chen Liming, Feng Jie, Yan Wenchao, et al. Ultra-high charge electron acceleration for nuclear applications[J]. Fundamental Plasma Physics, 2024, 12: 100071. doi: 10.1016/j.fpp.2024.100071 [41] Nakanii N, Huang K, Kondo K, et al. Precise pointing control of high-energy electron beam from laser wakefield acceleration using an aperture[J]. Applied Physics Express, 2023, 16: 026001. doi: 10.35848/1882-0786/acb892 [42] Shalloo R J, Dann S J D, Gruse J N, et al. Automation and control of laser wakefield accelerators using Bayesian optimization[J]. Nature Communications, 2020, 11: 6355. doi: 10.1038/s41467-020-20245-6 [43] Zhai H T, Zhu M Y, Hu X C, et al. Efficient generation of hundred nano-coulomb electron beam via hybrid plasma wakefield acceleration[J]. High Power Laser Science and Engineering (accepted).. -
下载: