留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光驱动的超快X射线动力学实验站

李毅飞 王进光 鲁欣 廖国前 陈黎明 李玉同

李毅飞, 王进光, 鲁欣, 等. 飞秒激光驱动的超快X射线动力学实验站[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250382
引用本文: 李毅飞, 王进光, 鲁欣, 等. 飞秒激光驱动的超快X射线动力学实验站[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250382
Li Yifei, Wang Jinguang, Lu Xin, et al. Femtosecond laser-driven ultrafast X-ray dynamics experimental station[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250382
Citation: Li Yifei, Wang Jinguang, Lu Xin, et al. Femtosecond laser-driven ultrafast X-ray dynamics experimental station[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250382

飞秒激光驱动的超快X射线动力学实验站

doi: 10.11884/HPLPB202638.250382
基金项目: 国家重点研发计划(2024YFA1408703, 2021YFA1400204, 2021YFA1601700); 国家自然科学基金项目(92250307, 12175306, U24A2016, 12595363, 12335016,W2412039); 中国科学院青年科学家基础研究项目(YSBR-059); 中国科学院青年交叉团队项目(JCTD-2022-05)
详细信息
    作者简介:

    李毅飞,yflx@iphy.ac.cn

  • 中图分类号: O434

Femtosecond laser-driven ultrafast X-ray dynamics experimental station

  • 摘要: 激光等离子体加速的超高电子密度、超微时空结构、超高加速梯度,可产生飞秒(fs)级脉宽、高峰值亮度的实验室级超快光源,非常适宜构筑fs级时间分辨的超快动态诊断能力,可作为传统大型光源的补充和拓展。依托国家重大科技基础设施-综合极端条件实验装置(SECUF),建立了国内首个基于高功率飞秒激光驱动的超短X射线脉冲作为开放资源的用户实验站。激光系统具有两路输出:三太瓦(3 TW: 60 mJ/20 fs/800 nm)重频为100 Hz,拍瓦(PW: 25 J/25 fs/800 nm)每分钟1发。3 TW束可传输至两个靶室,建立了超快X射线衍射应用平台,具备多模式泵浦-探测能力,用于研究物质超快动力学过程;并基于激光等离子体电子加速研制出首个台面化高分辨超热中子共振谱学平台。PW束可传输至三个靶室,支持激光等离子体加速、激光核物理、超快X射线和新型太赫兹辐射产生等前沿研究,及超快脉冲辐射的应用。本实验站既支持利用飞秒激光产生的超快辐射脉冲开展物质科学研究,也支持直接利用高功率激光进行强场物理研究。
  • 图  1  超快X射线动力学实验站的实验装置布局示意图

    Figure  1.  Schematic diagram of the experimental setup layout for the ultrafast X-ray dynamic experimental station

    图  2  激光的稳定性和时域对比度

    Figure  2.  Laser stability and temporal contrast

    图  3  TPXP实验平台的布局示意图。

    Figure  3.  Schematic diagram of the THz pump–X-ray probe (TPXP) platform

    图  4  激光驱动产生的Cu Kα X射线、THz脉冲,以及激光泵浦单晶Au样品的衍射峰动态演化[17, 19]

    Figure  4.  Laser-driven Cu Kα X-ray, THz pulser, and time-resolved shift in X-ray diffraction from a laser-pumped gold thin film[17, 19]

    图  5  高分辨超热中子共振谱学实验平台:电子束参数和中子吸收谱的应用[18]

    Figure  5.  High-resolution epithermal neutron resonance spectroscopy experimental platform: electron beam parameters and application in neutron absorption spectroscopy[18]

    图  6  LWFA产生的电子能谱和等离子体镜方案产生的ICS辐射谱[27]

    Figure  6.  Energy spectrum generated from LWFA and the ICS radiation spectra based on PM scheme[27]

    图  7  电子加速实验结果:长焦LWFA,短焦LWFA到PWFA自模式转换[43]

    Figure  7.  Electron Acceleration Results: Long-Focal LWFA Experiments and Short-Focal LWFA-to-PWFA Self-Transition[43]

    表  1  激光主要参数

    Table  1.   Main parameters of Lasers

    maximum
    energy on
    target
    pulse
    duration
    (FWHM)/fs
    repetition
    rate
    contrast
    ratio
    energy
    stability
    (RSD)/%
    pointing
    stability
    (SD)/μrad
    spatial
    quality
    beam
    aperture/
    mm
    central
    wavelength/
    nm
    3 TW ~60 mJ 19.1 100 Hz ~1×10−9@ns
    ~6.6×10−10@-200 ps
    0.62% ~1.57(θH)
    ~2.53(θV)
    M2=1.19 40 800
    PW ~25 J ≤25 1 shot/min ~5×10−9@ns
    ~8.3×10−10@-200 ps
    2.1% ~0.84(θH)
    ~2.39(θV)
    0.9 SR 180 800
    下载: 导出CSV

    表  2  平台性能参数总结

    Table  2.   Platform Performance Summary

    Laser Parameters
    Central Wavelength 800 nm
    Pulse duration (FWHM) 20 fs
    Repetition rate 100 Hz
    Main laser energy ≤ 60 mJ (on the target)
    Spot diameter (1/e2) 12.2 μm × 13.6 μm (with~70% energy)
    X-ray Cu (8.04 keV)
    Kα yield (ph/2π/s) 8.5×1010 (3W laser)
    Energy conversion efficiency (2π) ~3.65 × 10−5
    X-ray spot size (FWHM) ~320 μm (Gauss distributed)
    X-ray photon number on sample ~1.2 × 107 phs/s (3W laser)
    Pointing stability of x-ray focus (SD) H: 16.96 μrad, V: 13.84 μrad
    Pulse duration <300fs
    Pump 800 nm / 400 nm / THz / OPA
    Pump energy < 0.5mJ / <5mJ /~25 μJ / under construction
    Pump pulse duration < 80fs / < 80fs / < 220fs (~3.34 MV/cm) / -
    Sample stage
    Adjustment dimension up to 7 axes adjustable at room temperature
    Temperature environment −195o C - 600o C (5 axes adjustable)
    下载: 导出CSV
  • [1] Rastogi V, Smith R F, Sims M, et al. Application of ultrafast x-ray lasers in studying the material structure under shock compression[J]. Journal of Applied Physics, 2025, 137: 070702. doi: 10.1063/5.0239330
    [2] Li Yutong, Chen Liming, Chen Min, et al. High-intensity lasers and research activities in China[J]. High Power Laser Science and Engineering, 2025, 13: e12. doi: 10.1017/hpl.2024.69
    [3] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
    [4] Albert F. Principles and applications of x-ray light sources driven by laser wakefield acceleration[J]. Physics of Plasmas, 2023, 30: 050902. doi: 10.1063/5.0142033
    [5] Rathore R, Singhal H, Kulkarni R, et al. Development of ultrashort intense broadband laser-plasma x-ray source for ultrafast Laue x-ray diffraction[J]. Review of Scientific Instruments, 2025, 96: 074902. doi: 10.1063/5.0250567
    [6] 中国科学院物理研究所. 飞秒激光驱动的定向超快X射线分幅成像装置及应用: 201910841360.7[P]. 2019-11-15

    Institute of Physics, Chinese Academy of Sciences. Directional ultrafast X-ray separation imaging device driven by femtosecond laser and application: 201910841360.7[P]. 2019-11-15
    [7] Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [8] Picksley A, Stackhouse J, Benedetti C, et al. Matched guiding and controlled injection in dark-current-free, 10-GeV-class, channel-guided laser-plasma accelerators[J]. Physical Review Letters, 2024, 133: 255001. doi: 10.1103/PhysRevLett.133.255001
    [9] Ziegler T, Göthel I, Assenbaum S, et al. Laser-driven high-energy proton beams from cascaded acceleration regimes[J]. Nature Physics, 2024, 20(7): 1211-1216. doi: 10.1038/s41567-024-02505-0
    [10] Liao Guoqian, Liu Hao, Scott G G, et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions[J]. Physical Review X, 2020, 10: 031062. doi: 10.1103/physrevx.10.031062
    [11] Zhang Xiaobo, Weng Suming, Ai Hong, et al. Photonic Rabi oscillations in defective plasma photonic crystals[J]. Physical Review Letters, 2025, 135: 015101. doi: 10.1103/k2th-m73q
    [12] Feng Jie, Wang Wenzhao, Fu Changbo, et al. Femtosecond pumping of nuclear isomeric states by the coulomb collision of ions with quivering electrons[J]. Physical Review Letters, 2022, 128: 052501. doi: 10.1103/PhysRevLett.128.052501
    [13] Feng Jie, Qi Jintao, Zhang Hanxu, et al. Laser-based approach to measure small nuclear cross sections in plasma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121: e2413221121. doi: 10.1073/pnas.2413221121
    [14] Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [15] Winkler P, Trunk M, Hübner L, et al. Active energy compression of a laser-plasma electron beam[J]. Nature, 2025, 640(8060): 907-910. doi: 10.1038/s41586-025-08772-y
    [16] Barber S K, Kohrell F, Doss C E, et al. Greater than 1000-fold gain in a free-electron laser driven by a laser-plasma accelerator with high reliability[J]. Physical Review Letters, 2025, 135: 055001. doi: 10.1103/vh62-gz1p
    [17] Hao Chen X-Y Z, Guo-Qian Liao, et al. All-optical table-top strong-field terahertz pump – ultrafast X-ray probe platform[J]. Review of Scientific Instruments, (accepted)..
    [18] Feng Jie, Ren Jie, Xu Hao, et al. Proof-of-principle demonstration of epithermal neutron resonance spectroscopy utilizing a compact laser-driven electron accelerator[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122: e2518397122. doi: 10.1073/pnas.2518397122
    [19] Chen Hao, Liao Guoqian, Wu Hongyuan, et al. Optimized terahertz generation in BNA organic crystals with chirped Ti: sapphire laser pulses[J]. Optics Letters, 2024, 49(18): 5047-5050. doi: 10.1364/OL.533146
    [20] Lu W, Nicoul M, Shymanovich U, et al. A modular table-top setup for ultrafast x-ray diffraction[J]. Review of Scientific Instruments, 2024, 95: 013002. doi: 10.1063/5.0181132
    [21] Claude R, Puppin M, Weaver B, et al. Shot-to-shot acquisition ultrafast electron diffraction[DB/OL]. arXiv preprint arXiv: 2502.02540, 2025.
    [22] Hao Xu J F, Zhu Mingyang, Shi Bingzhan, et al. Experimental demonstration of fast neutron absorption spectroscopy with laser-driven neutron source[J]. (under review)..
    [23] 雷弘毅, 孙方正, 陈浩, 等. 强场太赫兹脉冲波形和频谱的单发测量技术[J]. 中国激光, 2023, 50: 1714001 doi: 10.3788/CJL230790

    Lei Hongyi, Sun Fangzheng, Chen Hao, et al. Single-shot waveform and spectrum measurement techniques for strong field terahertz pulses[J]. Chinese Journal of Lasers, 2023, 50: 1714001 doi: 10.3788/CJL230790
    [24] Ruan J Y, Zhang X Y, Liao G Q, et al. Terawatt-level widely-tunable terahertz bursts from femtosecond laser-irradiated metallic foils[J]. (under review)..
    [25] Zhu Changqing, Wang Jinguang, Feng Jie, et al. Inverse Compton scattering x-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses[J]. Plasma Physics and Controlled Fusion, 2019, 61: 024001. doi: 10.1088/1361-6587/aaebe3
    [26] Chen Siyu, Yan Wenchao, Zhu Mingyang, et al. A platform for all-optical Thomson/Compton scattering with versatile parameters[J]. High Power Laser Science and Engineering, 2025, 13: e56. doi: 10.1017/hpl.2025.36
    [27] Hu Xichen, Zhu Mingyang, Xie Pengpei, et al. Enhanced inverse Compton scattering via spontaneous focusing induced by coated plasma mirror[J]. (under review)..
    [28] Mirzaie M, Hojbota C I, Kim D Y, et al. All-optical nonlinear Compton scattering performed with a multi-petawatt laser[J]. Nature Photonics, 2024, 18(11): 1212-1217. doi: 10.1038/s41566-024-01550-8
    [29] Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
    [30] Senthilkumaran V, Beier N F, Fourmaux S, et al. Laser-driven betatron x rays for high-throughput imaging of additively manufactured materials[J]. Rev Sci Instrum, 2024, 95: 123510. doi: 10.1063/5.0221606
    [31] Gruse J N, Streeter M J V, Thornton C, et al. Application of compact laser-driven accelerator X-ray sources for industrial imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 983: 164369. doi: 10.1016/j.nima.2020.164369
    [32] Cole J M, Symes D R, Lopes N C, et al. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6335-6340.
    [33] Hussein A E, Senabulya N, Ma Y, et al. Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures[J]. Scientific Reports, 2019, 9: 3249. doi: 10.1038/s41598-019-39845-4
    [34] Balcazar M D, Tsai H E, Ostermayr T M, et al. Multi-messenger dynamic imaging of laser-driven shocks in water using a plasma wakefield accelerator[J]. Nature Communications, 2025.
    [35] Kettle B, Colgan C, Los E E, et al. Extended X-ray absorption spectroscopy using an ultrashort pulse laboratory-scale laser-plasma accelerator[J]. Communications Physics, 2024, 7: 247. doi: 10.1038/s42005-024-01735-1
    [36] Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 2016, 6: 27633. doi: 10.1038/srep27633
    [37] Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021.
    [38] Shou Yinren, Wang Pengjie, Lee S G, et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma[J]. Nature Photonics, 2023, 17(2): 137-142. doi: 10.1038/s41566-022-01114-8
    [39] Hu Xichen, Zhu Mingyang, Li Yifei, et al. Hundreds of nanocoulomb electron acceleration driven by multipetawatt laser in subcritical density plasmas[J]. Advanced Photonics Research, 2025, 6: 2500056. doi: 10.1002/adpr.202500056
    [40] Chen Liming, Feng Jie, Yan Wenchao, et al. Ultra-high charge electron acceleration for nuclear applications[J]. Fundamental Plasma Physics, 2024, 12: 100071. doi: 10.1016/j.fpp.2024.100071
    [41] Nakanii N, Huang K, Kondo K, et al. Precise pointing control of high-energy electron beam from laser wakefield acceleration using an aperture[J]. Applied Physics Express, 2023, 16: 026001. doi: 10.35848/1882-0786/acb892
    [42] Shalloo R J, Dann S J D, Gruse J N, et al. Automation and control of laser wakefield accelerators using Bayesian optimization[J]. Nature Communications, 2020, 11: 6355. doi: 10.1038/s41467-020-20245-6
    [43] Zhai H T, Zhu M Y, Hu X C, et al. Efficient generation of hundred nano-coulomb electron beam via hybrid plasma wakefield acceleration[J]. High Power Laser Science and Engineering (accepted)..
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-31
  • 修回日期:  2025-12-17
  • 录用日期:  2025-12-15
  • 网络出版日期:  2026-01-06

目录

    /

    返回文章
    返回