Status and recent progress of the “XingGuang” ultrashort and ultra-intense laser experimental platform
-
摘要: 综述了等离子体物理全国重点实验室“星光”超短超强脉冲激光实验平台的发展历程与现状。目前,平台包括星光III装置与SILEX-II装置。面向惯性约束聚变(ICF)、高能量密度物理(HEDP)、极端条件下的物质特性等研究开放,提供极端状态产生、“泵浦-探测”等关键实验能力。重点介绍了星光III装置和SILEX-II装置的系统构成与关键技术。星光III装置可实现纳秒、皮秒、飞秒三种脉宽激光的高精度同步输出;SILEX-II装置采用全OPCPA架构,可实现高对比度、拍瓦级峰值功率飞秒激光脉冲。最后,展示了“星光”平台上开展的多束激光协同的代表性实验。Abstract: This review summarizes the evolution and present capabilities of the “XingGuang” ultrashort and ultra-intense laser platform at the National Key Laboratory of Plasma Physics (CAEP), which integrates the XingGuang-III (XG-III) multi-pulse facility and the all-OPCPA SILEX-II multi-petawatt system. Targeting inertial confinement fusion (ICF), high-energy-density physics (HEDP), and matter under extreme conditions, the platform enables both extreme-state creation and time-resolved pump–probe measurements. We outline the system architecture, key enabling technologies, and experimental capabilities. XG-III adopts a common-seed, split-and-amplify design that delivers femtosecond/picosecond/nanosecond beams with sub-picosecond timing jitter (<1.32 ps); typical operating points reach~20 J/26.8 fs,~370 J/(0.48–10 ps) and~575 J/1 ns, with on-target focal spots below 10 μm (fs) and 20 μm (ps). SILEX-II employs a full optical parametric chirped-pulse amplification (OPCPA) chain to achieve~5 PW peak power after compression to~18.6 fs while retaining >90 J, combining >10^10 temporal contrast (tens of ps before the main pulse) with near-diffraction-limited focusing (~3.3×4.0 μm FWHM) enabled by adaptive optics and achromatic compensation, reaching intensities above 1020 W/cm2. In addition, we present representative multi-beam, coordinated experiments enabled by the platform, including three-dimensional proton imaging of temperature-gradient-driven Weibel magnetic fields and energy-loss measurements of intense ion beams in warm dense plasmas, highlighting its strong potential for frontier research.
-
图 16 实验排布与测量,引用自文献[55]
Figure 16. Layout of the experiment. Reprinted from Ref. [55]
(a) A ps laser is focused onto a tungsten foil, generating intense short-pulse ion beams with different species. A magnetic dipole with slits at the entrance and exit serve as p/q analyser to select monoenergetic ion beams. Such ions interact with the laser-generated plasma target and emerge from the target with a lower energy due to the incurred energy loss. The final-state energy is measured by a Thomson parabola in conjunction with CR39 film (b) Parabola spectra of laser-accelerated ions without dipole measured by Thomson parabola in conjunction with Fuji image plate (c) The target consists of a gold hohlraum converter to produce the soft X-rays that irradiate the TCA foam to generate a dense ionized sample (d) The insert shows the simulation result of an intense proton beam moving along the z direction, inducing a strong longitudinal electric field, which is counter directional to the proton beam propagation, causing the unusual high degree of stopping
表 1 星光III装置三束激光运行参数
Table 1. Operating parameters of the three beams on the XingGuang-III facility
fs beam ps beam ns beam Aperture Φ160 mm 240 mm×240 mm 190 mm×190 mm Central wavelength 800 nm 1053 nm527 nm Maximum output energy 20.12 J (typical 8–10 J) 370.2 J (typical 80–120 J; peak 150 J) 575.4 J (typical 150–200 J) Energy fluctuation ±10%@15 J ±10%@100 J ±10%@180 J Pulse width (FWHM) 26.8 fs (typically < 50 fs) 0.5–10 ps (typically < 1 ps) 1.1 ns (typically 1.1 ns ± 0.2 ns;
independent source tunable 1.5–3 ns)Pulse width fluctuation ±5 fs@30 fs ±0.1 ps@0.8 ps ±0.1 ns Focal-spot diameter <10 μm <20 μm < 144 μm (with CPP; Φ1 mm
uniform far field)Energy concentration (within
3× diffraction limit)>30% >30% — Temporal contrast >108:1 >108:1 — Repetition 20 min/shot 2 h/shot 2 h/shot Synchronization jitter ≈1 ps with a tuning range of ±500 ps; for the ns independent source, tuning range ±5 μs and synchronization
jitter < 100 ps表 2 SILEX-II激光运行参数
Table 2. Operating parameters of the SILEX-II laser
central
wavelength/nmpolarization pulse duration
(FWHM)/fsmaximum output
energy/Jtemporal
contrastenergy
concentration/%peak intensity (on
target)/(W/cm2)800 S 30±10 30±10 > 1010:1 (beyond 50 ps) >50 within Φ10 μm >1020 -
[1] 戴亚平, 粟敬钦, 魏晓峰, 等. 星光超强激光装置[J]. 光学学报, 2022, 42: 1714001 doi: 10.3788/AOS202242.1714001Dai Yaping, Su Jingqin, Wei Xiaofeng, et al. XingGuang-extreme laser facility[J]. Acta Optica Sinica, 2022, 42: 1714001 doi: 10.3788/AOS202242.1714001 [2] 上海超强超短激光实验装置研制进展——专访中国科学院上海光学精密机械研究所李儒新院士[J]. 强激光与粒子束, 2020, 32: 011002Research progress of Shanghai Superintense Ultrafast Laser Facility: an interview with academician Li Ruxin from Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences[J]. High Power Laser and Particle Beams, 2020, 32: 011002 [3] Batani D. Matter in extreme conditions produced by lasers[J]. Europhysics Letters, 2016, 114: 65001. doi: 10.1209/0295-5075/114/65001 [4] Batani K, Batani D, He X T, et al. Recent progress in matter in extreme states created by laser[J]. Matter and Radiation at Extremes, 2022, 7: 013001. doi: 10.1063/5.0078895 [5] Brueckner K A, Jorna S. Laser-driven fusion[J]. Reviews of Modern Physics, 1974, 46(2): 325-367. doi: 10.1103/RevModPhys.46.325 [6] 张杰. 浅谈惯性约束核聚变[J]. 物理, 1999, 28(3): 142-152Zhang Jie. An overview of inertial confinement fusion[J]. Physics, 1999, 28(3): 142-152 [7] 范滇元, 贺贤土. 惯性约束聚变能源与激光驱动器[J]. 大自然探索, 1999, 18(1): 31-35Fan Dianyuan, He Xiantu. Inertial confinement fusion energy and laser drivers[J]. Exploration of Nature, 1999, 18(1): 31-35 [8] Guo Bing, Fu Changbo, Bonasera A. Editorial: advances in laser-driven nuclear physics[J]. Frontiers in Physics, 2024, 12: 1503516. doi: 10.3389/fphy.2024.1503516 [9] Habs D, Tajima T, Schreiber J, et al. Vision of nuclear physics with photo-nuclear reactions by laser-driven γ beams[J]. The European Physical Journal D, 2009, 55(2): 279-285. doi: 10.1140/epjd/e2009-00101-2 [10] Zamfir N V. Nuclear physics with 10 PW laser beams at extreme light infrastructure–nuclear physics (ELI-NP)[J]. The European Physical Journal Special Topics, 2014, 223(6): 1221-1227. doi: 10.1140/epjst/e2014-02176-0 [11] Remington B A, Drake R P, Takabe H, et al. A review of astrophysics experiments on intense lasers[J]. Physics of Plasmas, 2000, 7(5): 1641-1652. doi: 10.1063/1.874046 [12] Takabe H, Kuramitsu Y. Recent progress of laboratory astrophysics with intense lasers[J]. High Power Laser Science and Engineering, 2021, 9: e49. doi: 10.1017/hpl.2021.35 [13] Sun Wei, Zhong Yiayong. Recent advances in laboratory astrophysics on megajoule-class laser facilities[J]. Chinese Astronomy and Astrophysics, 2021, 45(3): 265-280. doi: 10.1016/j.chinastron.2021.08.001 [14] 仲佳勇, 安维明, 平永利, 等. 强激光实验室天体物理介绍[J]. 强激光与粒子束, 2020, 32: 092003 doi: 10.11884/HPLPB202032.200123Zhong Jiayong, An Weiming, Ping Yongli, et al. Introduction of laboratory astrophysics with intense lasers[J]. High Power Laser and Particle Beams, 2020, 32: 092003 doi: 10.11884/HPLPB202032.200123 [15] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8 [16] Perry M D, Pennington D, Stuart B C, et al. Petawatt laser pulses[J]. Optics Letters, 1999, 24(3): 160-162. doi: 10.1364/OL.24.000160 [17] Radier C, Chalus O, Charbonneau M, et al. 10 PW peak power femtosecond laser pulses at ELI-NP[J]. High Power Laser Science and Engineering, 2022, 10: e21. doi: 10.1017/hpl.2022.11 [18] Zou J P, Le Blanc C, Papadopoulos D N, et al. Design and current progress of the Apollon 10 PW project[J]. High Power Laser Science and Engineering, 2015, 3: e2. [19] Kiriyama H, Miyasaka Y, Kon A, et al. Laser output performance and temporal quality enhancement at the J-KAREN-P petawatt laser facility[J]. Photonics, 2023, 10: 997. doi: 10.3390/photonics10090997 [20] Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 2019, 7: e4. doi: 10.1017/hpl.2018.64 [21] Kawanaka J, Tsubakimoto K, Yoshida H, et al. Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification[J]. Journal of Physics: Conference Series, 2016, 688: 012044. doi: 10.1088/1742-6596/688/1/012044 [22] Cartlidge E. Eastern Europe's laser centers will debut without a star[J]. Science, 2017, 355: 785. doi: 10.1126/science.355.6327.785 [23] Bashinov A V, Gonoskov A A, Kim A V, et al. New horizons for extreme light physics with mega-science project XCELS[J]. The European Physical Journal Special Topics, 2014, 223(6): 1105-1112. doi: 10.1140/epjst/e2014-02161-7 [24] Gan Zebiao, Yu Lianghong, Wang Cheng, et al. The Shanghai superintense ultrafast laser facility (SULF) project[M]//Yamanouchi K, Midorikawa K, Roso L. Progress in Ultrafast Intense Laser Science XVI. Cham: Springer, 2021: 199-217. [25] Peng Yujie, Xu Yi, Yu Lianghong, et al. Overview and status of station of extreme light toward 100 PW[J]. The Review of Laser Engineering, 2021, 49(2): 93-96. doi: 10.2184/lsj.49.2_93 [26] Wang Zhaohua, Liu Cheng, Shen Zhongwei, et al. High-contrast 1.16 PW Ti: sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier[J]. Optics Letters, 2011, 36(16): 3194-3196. doi: 10.1364/OL.36.003194 [27] 王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 中国激光, 1987, 14(11): 641-645Wang Ganchang. Suggestion of neutron generation with powerful lasers[J]. Chinese Journal of Lasers, 1987, 14(11): 641-645 [28] 陈晓峰, 郑志坚. 高温高密度等离子体物理国家重点实验室简介[J]. 物理, 1998, 27(11): 698Chen Xiaofeng, Zheng Zhijian. A brief introduction to the state key laboratory of high temperature and high density plasma physics[J]. Physics, 1998, 27(11): 698 [29] Peng H S. ICF and related laser programs in China[C]. 1993. [30] Peng Hansheng. Inertial confinement fusion and related laser programs in China[C]//Proceedings of SPIE 2096, Lasers in Optical Systems and Devices. 1994: 33-38. [31] Peng Hansheng. Inertial confinement fusion program at CAEP[J]. AIP Conference Proceedings, 1996, 369(1): 61-70. doi: 10.1063/1.50487 [32] Peng Hansheng, Zhang Xiaomin, Wei Xiaofeng, et al. Overview of the solid state laser projects for ICF applications at CAEP[C]//Proceedings of SPIE 3683, Laser Optics '98: Superstrong Laser Fields and Applications. 1998: 120-127. [33] Zhang Jie, Gu Y Q, Li Y J, et al. Research on efficient X-ray lasing at XingGuang II Laser Facility[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(6): 1469-1474. doi: 10.1109/2944.814986 [34] Zhao Zongqing, Ding Yongkun, Dong Jianjun, et al. Richardson–Lucy method for decoding x-ray ring code image[J]. Plasma Physics and Controlled Fusion, 2007, 49(8): 1145-1150. doi: 10.1088/0741-3335/49/8/003 [35] Peng Hansheng, Huang Xiaojun, Zhu Qihua, et al. 286-TW Ti: sapphire laser at CAEP[C]//Proceedings of SPIE 5627, High-Power Lasers and Applications III. 2005: 1-5. [36] Peng H S, Huang X J, Zhu Q H, et al. SILEX-I: 300-TW Ti: sapphire laser[J]. Laser Physics, 2006, 16(2): 244-247. doi: 10.1134/S1054660X0602006X [37] Zhu Qihua, Peng Hansheng, Wei Xiaofeng, et al. Introduction of SILEX-I Femto-second Ti: sapphire laser facility[J]. Journal of Physics: Conference Series, 2007, 72: 012009. doi: 10.1088/1742-6596/72/1/012009 [38] Hong W, He Y, Wen T, et al. Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse[J]. Laser and Particle Beams, 2009, 27(1): 19-26. doi: 10.1017/S0263034609000032 [39] Gao Yulin, Zhou Weimin, Wei Lai, et al. Diagnosis of the soft X-ray spectrum emitted by laser-plasmas using a spectroscopic photon sieve[J]. Laser and Particle Beams, 2012, 30(2): 313-317. doi: 10.1017/S0263034612000080 [40] 亀島敬, カメシマタカシ. GeV-class high quality electron beams accelerated by laser wakefield in capillary discharge plasma[J]. 2009. [41] Dong Jun, Peng Zhitao, Lu Zhonggui, et al. Transient measurement of Laser wakefield at the SILEX-I: Ti: sapphire laser[C]//Proceedings of the Conference on Lasers and Electro-Optics 2012. 2012: JTh2A. 21. [42] Wang Changjun, Peng Yongjin, Liu Yuling, et al. Study of a high-energy proton beam produced by ultra-intense pulse laser[J]. Journal of Russian Laser Research, 2017, 38(4): 357-363. doi: 10.1007/s10946-017-9653-5 [43] 李勇, 洪伟, 吴玉迟, 等. 超薄靶激光质子加速实验研究[J]. 强激光与粒子束, 2010, 22(5): 1001-1004 doi: 10.3788/HPLPB20102205.1001Li Yong, Hong Wei, Wu Yuchi, et al. Experimental study of laser-driven proton acceleration with ultrathin targets[J]. High Power Laser and Particle Beams, 2010, 22(5): 1001-1004 doi: 10.3788/HPLPB20102205.1001 [44] 邓才波, 陈家斌, 吴玉迟, 等. SILEX-I装置上激光-团簇聚变实验中子产额测量[J]. 强激光与粒子束, 2011, 23(6): 1645-1648 doi: 10.3788/HPLPB20112306.1645Deng Caibo, Chen Jiabin, Wu Yuchi, et al. Diagnosing neutron yield for interaction of laser-cluster in SILEX-I[J]. High Power Laser and Particle Beams, 2011, 23(6): 1645-1648 doi: 10.3788/HPLPB20112306.1645 [45] Zhu Qihua, Zhou Kainan, Su Jingqin, et al. The XingGuang-III laser facility: Precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 2018, 15: 015301. doi: 10.1088/1612-202X/aa94e9 [46] Wu Yuchi, Zhu Bin, Dong Kegong, et al. XingGuang III laser facility and its experimental ability to drive high-energy particle beams[J]. Laser Physics, 2020, 30: 096001. doi: 10.1088/1555-6611/aba3ca [47] Zhou Kainan, Huang Xiaojun, Zeng Xiaoming, et al. Improvement of focusing performance for a multi-petawatt OPCPA laser facility[J]. Laser Physics, 2018, 28: 125301. doi: 10.1088/1555-6611/aae0db [48] 李纲, 周凯南, 朱斌, 等. 拍瓦级光参量啁啾脉冲放大系统中光参量相位演化研究[J]. 中国激光, 2024, 51: 0601005 doi: 10.3788/CJL230836Li Gang, Zhou Kainan, Zhu Bin, et al. Investigation on optical parametric phase evolution in Petawatt optical parametric chirped pulse amplifier system[J]. Chinese Journal of Lasers, 2024, 51: 0601005 doi: 10.3788/CJL230836 [49] 李纲, 郭仪, 曾小明, 等. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究[J]. 物理学报, 2022, 71: 074203 doi: 10.7498/aps.71.20211961Li Gang, Guo Yi, Zeng Xiaoming, et al. Investigation of active pump-signal synchronization technique for a ps-pulse pumped OPCPA[J]. Acta Physica Sinica, 2022, 71: 074203 doi: 10.7498/aps.71.20211961 [50] Hong Wei, He Shukai, Teng Jian, et al. Commissioning experiment of the high-contrast SILEX-II multi-petawatt laser facility[J]. Matter and Radiation at Extremes, 2021, 6: 064401. doi: 10.1063/5.0016019 [51] Veisz L, Theobald W, Feurer T, et al. Three-halves harmonic emission from femtosecond laser produced plasmas with steep density gradients[J]. Physics of Plasmas, 2004, 11(6): 3311-3323. doi: 10.1063/1.1748174 [52] Haines M G, Wei Mingsheng, Beg F N, et al. Hot-electron temperature and laser-light absorption in fast ignition[J]. Physical Review Letters, 2009, 102: 045008. doi: 10.1103/PhysRevLett.102.045008 [53] Kluge T, Cowan T, Debus A, et al. Electron temperature scaling in laser interaction with solids[J]. Physical Review Letters, 2011, 107: 205003. doi: 10.1103/PhysRevLett.107.205003 [54] Zhao Zhongai, He Shukai, An Honghai, et al. Laboratory evidence of Weibel magnetogenesis driven by temperature gradient using three-dimensional synchronous proton radiography[J]. Science Advances, 2024, 10: eadk5229. doi: 10.1126/sciadv.adk5229 [55] Ren Jieru, Deng Zhigang, Qi Wei, et al. Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter[J]. Nature Communications, 2020, 11: 5157. doi: 10.1038/s41467-020-18986-5 -
下载: