留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“星光”超短超强激光实验平台发展现状

吴玉迟 韩智龙 李纲 赵宗清 周维民

吴玉迟, 韩智龙, 李纲, 等. “星光”超短超强激光实验平台发展现状[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250390
引用本文: 吴玉迟, 韩智龙, 李纲, 等. “星光”超短超强激光实验平台发展现状[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250390
Wu Yuchi, Han Zhilong, Li Gang, et al. Status and recent progress of the “XingGuang” ultrashort and ultra-intense laser experimental platform[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250390
Citation: Wu Yuchi, Han Zhilong, Li Gang, et al. Status and recent progress of the “XingGuang” ultrashort and ultra-intense laser experimental platform[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250390

“星光”超短超强激光实验平台发展现状

doi: 10.11884/HPLPB202638.250390
基金项目: 国家自然科学基金项目(12175212、12275250、12275253)
详细信息
    作者简介:

    吴玉迟,wuyuchi@caep.cn

    通讯作者:

    赵宗清,zhaozongqing99@caep.cn

  • 中图分类号: O437

Status and recent progress of the “XingGuang” ultrashort and ultra-intense laser experimental platform

  • 摘要: 综述了等离子体物理全国重点实验室“星光”超短超强脉冲激光实验平台的发展历程与现状。目前,平台包括星光III装置与SILEX-II装置。面向惯性约束聚变(ICF)、高能量密度物理(HEDP)、极端条件下的物质特性等研究开放,提供极端状态产生、“泵浦-探测”等关键实验能力。重点介绍了星光III装置和SILEX-II装置的系统构成与关键技术。星光III装置可实现纳秒、皮秒、飞秒三种脉宽激光的高精度同步输出;SILEX-II装置采用全OPCPA架构,可实现高对比度、拍瓦级峰值功率飞秒激光脉冲。最后,展示了“星光”平台上开展的多束激光协同的代表性实验。
  • 图  1  星光系列建成的一系列激光装置的照片

    Figure  1.  Photographs of a series of laser facilities built at the“XingGuang”

    图  2  星光III的具体布局。引用自文献[46]

    Figure  2.  Configuration of XingGuang-III. Reprinted from Ref. [46]

    图  3  星光III的光束设计架构。引用自文献[45]

    Figure  3.  Optical beamline architecture of XingGuang-III. Reprinted from Ref. [45]

    图  4  皮秒与飞秒束的种子脉冲产生。引用自文献[45]

    Figure  4.  Seed-pulse generation for the picosecond and femtosecond beams. Reprinted from Ref. [45]

    图  5  三束光的光谱与时间脉宽。引用自文献[45]

    Figure  5.  Measured spectra and temporal pulse profiles for three beamsReprinted from Ref. [45]

    (a) and (b) for the femtosecond beam (c) and (d) for the picosecond beam for large-energy shots (e) and (f) for the nanosecond beam after frequency doubling

    图  6  上靶焦斑。引用自文献[46]

    Figure  6.  On-target focal spots. Reprinted from Ref. [46]

    图  7  靶室与三束激光的光路,引用自文献[46]

    Figure  7.  Target chamber and beam paths of the three lasers. Reprinted from Ref. [46]

    图  8  SILEX-II 全 OPCPA激光装置原理示意图。引用自文献[48]

    Figure  8.  Schematic of the SILEX-II laser system with full optical parametric chirped-pulse amplification (OPCPA). Reprinted from Ref. [48]

    图  9  自适应光学系统的示意图。DM:可变形镜,OAP:离轴抛物面镜。引用自文献[47]

    Figure  9.  Schematic of the adaptive optics (AO) system. DM: deformable mirror; OAP: off-axis parabolic mirror. Reprinted from Ref. [47]

    图  10  SILEX-II 装置的靶区。引用自文献[49]

    Figure  10.  Target area of the SILEX-II facility. Reprinted from Ref. [49]

    图  11  激光聚焦特性诊断实验诊断结果。引用自文献[49]

    Figure  11.  Diagnostic results of the laser-focusing characterization experiment. Reprinted from Ref. [49]

    图  12  激光信噪比诊断实验结果。引用自文献[49]

    Figure  12.  Results of the temporal-contrast diagnostic. Reprinted from Ref. [49]

    图  13  激光强度诊断实验结果。引用自文献[49]

    Figure  13.  Results of the laser-intensity diagnostic. Reprinted from Ref. [49]

    图  14  温度梯度驱动 Weibel 磁场生成的 3维质子成像实验设置。引用自文献[54]

    Figure  14.  Experimental setup for 3D proton radiography of temperature-gradient-driven Weibel magnetic-field generation. Reprinted from Ref. [54]

    图  15  强碰撞铜(Cu)等离子体与弱碰撞塑料(CH)等离子体中自生磁场的三维同步质子照相。引用自文献[54]

    Figure  15.  Simultaneous 3D proton radiography of self-generated magnetic fields in a strongly collisional copper (Cu) plasma and a weakly collisional plastic (CH) plasma. Reprinted from Ref. [54]

    图  16  实验排布与测量,引用自文献[55]

    Figure  16.  Layout of the experiment. Reprinted from Ref. [55]

    (a) A ps laser is focused onto a tungsten foil, generating intense short-pulse ion beams with different species. A magnetic dipole with slits at the entrance and exit serve as p/q analyser to select monoenergetic ion beams. Such ions interact with the laser-generated plasma target and emerge from the target with a lower energy due to the incurred energy loss. The final-state energy is measured by a Thomson parabola in conjunction with CR39 film (b) Parabola spectra of laser-accelerated ions without dipole measured by Thomson parabola in conjunction with Fuji image plate (c) The target consists of a gold hohlraum converter to produce the soft X-rays that irradiate the TCA foam to generate a dense ionized sample (d) The insert shows the simulation result of an intense proton beam moving along the z direction, inducing a strong longitudinal electric field, which is counter directional to the proton beam propagation, causing the unusual high degree of stopping

    表  1  星光III装置三束激光运行参数

    Table  1.   Operating parameters of the three beams on the XingGuang-III facility

    fs beam ps beam ns beam
    Aperture Φ160 mm 240 mm×240 mm 190 mm×190 mm
    Central wavelength 800 nm 1053 nm 527 nm
    Maximum output energy 20.12 J (typical 8–10 J) 370.2 J (typical 80–120 J; peak 150 J) 575.4 J (typical 150–200 J)
    Energy fluctuation ±10%@15 J ±10%@100 J ±10%@180 J
    Pulse width (FWHM) 26.8 fs (typically < 50 fs) 0.5–10 ps (typically < 1 ps) 1.1 ns (typically 1.1 ns ± 0.2 ns;
    independent source tunable 1.5–3 ns)
    Pulse width fluctuation ±5 fs@30 fs ±0.1 ps@0.8 ps ±0.1 ns
    Focal-spot diameter <10 μm <20 μm < 144 μm (with CPP; Φ1 mm
    uniform far field)
    Energy concentration (within
    3× diffraction limit)
    >30% >30%
    Temporal contrast >108:1 >108:1
    Repetition 20 min/shot 2 h/shot 2 h/shot
    Synchronization jitter ≈1 ps with a tuning range of ±500 ps; for the ns independent source, tuning range ±5 μs and synchronization
    jitter < 100 ps
    下载: 导出CSV

    表  2  SILEX-II激光运行参数

    Table  2.   Operating parameters of the SILEX-II laser

    central
    wavelength/nm
    polarization pulse duration
    (FWHM)/fs
    maximum output
    energy/J
    temporal
    contrast
    energy
    concentration/%
    peak intensity (on
    target)/(W/cm2)
    800 S 30±10 30±10 > 1010:1 (beyond 50 ps) >50 within Φ10 μm >1020
    下载: 导出CSV
  • [1] 戴亚平, 粟敬钦, 魏晓峰, 等. 星光超强激光装置[J]. 光学学报, 2022, 42: 1714001 doi: 10.3788/AOS202242.1714001

    Dai Yaping, Su Jingqin, Wei Xiaofeng, et al. XingGuang-extreme laser facility[J]. Acta Optica Sinica, 2022, 42: 1714001 doi: 10.3788/AOS202242.1714001
    [2] 上海超强超短激光实验装置研制进展——专访中国科学院上海光学精密机械研究所李儒新院士[J]. 强激光与粒子束, 2020, 32: 011002

    Research progress of Shanghai Superintense Ultrafast Laser Facility: an interview with academician Li Ruxin from Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences[J]. High Power Laser and Particle Beams, 2020, 32: 011002
    [3] Batani D. Matter in extreme conditions produced by lasers[J]. Europhysics Letters, 2016, 114: 65001. doi: 10.1209/0295-5075/114/65001
    [4] Batani K, Batani D, He X T, et al. Recent progress in matter in extreme states created by laser[J]. Matter and Radiation at Extremes, 2022, 7: 013001. doi: 10.1063/5.0078895
    [5] Brueckner K A, Jorna S. Laser-driven fusion[J]. Reviews of Modern Physics, 1974, 46(2): 325-367. doi: 10.1103/RevModPhys.46.325
    [6] 张杰. 浅谈惯性约束核聚变[J]. 物理, 1999, 28(3): 142-152

    Zhang Jie. An overview of inertial confinement fusion[J]. Physics, 1999, 28(3): 142-152
    [7] 范滇元, 贺贤土. 惯性约束聚变能源与激光驱动器[J]. 大自然探索, 1999, 18(1): 31-35

    Fan Dianyuan, He Xiantu. Inertial confinement fusion energy and laser drivers[J]. Exploration of Nature, 1999, 18(1): 31-35
    [8] Guo Bing, Fu Changbo, Bonasera A. Editorial: advances in laser-driven nuclear physics[J]. Frontiers in Physics, 2024, 12: 1503516. doi: 10.3389/fphy.2024.1503516
    [9] Habs D, Tajima T, Schreiber J, et al. Vision of nuclear physics with photo-nuclear reactions by laser-driven γ beams[J]. The European Physical Journal D, 2009, 55(2): 279-285. doi: 10.1140/epjd/e2009-00101-2
    [10] Zamfir N V. Nuclear physics with 10 PW laser beams at extreme light infrastructure–nuclear physics (ELI-NP)[J]. The European Physical Journal Special Topics, 2014, 223(6): 1221-1227. doi: 10.1140/epjst/e2014-02176-0
    [11] Remington B A, Drake R P, Takabe H, et al. A review of astrophysics experiments on intense lasers[J]. Physics of Plasmas, 2000, 7(5): 1641-1652. doi: 10.1063/1.874046
    [12] Takabe H, Kuramitsu Y. Recent progress of laboratory astrophysics with intense lasers[J]. High Power Laser Science and Engineering, 2021, 9: e49. doi: 10.1017/hpl.2021.35
    [13] Sun Wei, Zhong Yiayong. Recent advances in laboratory astrophysics on megajoule-class laser facilities[J]. Chinese Astronomy and Astrophysics, 2021, 45(3): 265-280. doi: 10.1016/j.chinastron.2021.08.001
    [14] 仲佳勇, 安维明, 平永利, 等. 强激光实验室天体物理介绍[J]. 强激光与粒子束, 2020, 32: 092003 doi: 10.11884/HPLPB202032.200123

    Zhong Jiayong, An Weiming, Ping Yongli, et al. Introduction of laboratory astrophysics with intense lasers[J]. High Power Laser and Particle Beams, 2020, 32: 092003 doi: 10.11884/HPLPB202032.200123
    [15] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [16] Perry M D, Pennington D, Stuart B C, et al. Petawatt laser pulses[J]. Optics Letters, 1999, 24(3): 160-162. doi: 10.1364/OL.24.000160
    [17] Radier C, Chalus O, Charbonneau M, et al. 10 PW peak power femtosecond laser pulses at ELI-NP[J]. High Power Laser Science and Engineering, 2022, 10: e21. doi: 10.1017/hpl.2022.11
    [18] Zou J P, Le Blanc C, Papadopoulos D N, et al. Design and current progress of the Apollon 10 PW project[J]. High Power Laser Science and Engineering, 2015, 3: e2.
    [19] Kiriyama H, Miyasaka Y, Kon A, et al. Laser output performance and temporal quality enhancement at the J-KAREN-P petawatt laser facility[J]. Photonics, 2023, 10: 997. doi: 10.3390/photonics10090997
    [20] Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 2019, 7: e4. doi: 10.1017/hpl.2018.64
    [21] Kawanaka J, Tsubakimoto K, Yoshida H, et al. Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification[J]. Journal of Physics: Conference Series, 2016, 688: 012044. doi: 10.1088/1742-6596/688/1/012044
    [22] Cartlidge E. Eastern Europe's laser centers will debut without a star[J]. Science, 2017, 355: 785. doi: 10.1126/science.355.6327.785
    [23] Bashinov A V, Gonoskov A A, Kim A V, et al. New horizons for extreme light physics with mega-science project XCELS[J]. The European Physical Journal Special Topics, 2014, 223(6): 1105-1112. doi: 10.1140/epjst/e2014-02161-7
    [24] Gan Zebiao, Yu Lianghong, Wang Cheng, et al. The Shanghai superintense ultrafast laser facility (SULF) project[M]//Yamanouchi K, Midorikawa K, Roso L. Progress in Ultrafast Intense Laser Science XVI. Cham: Springer, 2021: 199-217.
    [25] Peng Yujie, Xu Yi, Yu Lianghong, et al. Overview and status of station of extreme light toward 100 PW[J]. The Review of Laser Engineering, 2021, 49(2): 93-96. doi: 10.2184/lsj.49.2_93
    [26] Wang Zhaohua, Liu Cheng, Shen Zhongwei, et al. High-contrast 1.16 PW Ti: sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier[J]. Optics Letters, 2011, 36(16): 3194-3196. doi: 10.1364/OL.36.003194
    [27] 王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 中国激光, 1987, 14(11): 641-645

    Wang Ganchang. Suggestion of neutron generation with powerful lasers[J]. Chinese Journal of Lasers, 1987, 14(11): 641-645
    [28] 陈晓峰, 郑志坚. 高温高密度等离子体物理国家重点实验室简介[J]. 物理, 1998, 27(11): 698

    Chen Xiaofeng, Zheng Zhijian. A brief introduction to the state key laboratory of high temperature and high density plasma physics[J]. Physics, 1998, 27(11): 698
    [29] Peng H S. ICF and related laser programs in China[C]. 1993.
    [30] Peng Hansheng. Inertial confinement fusion and related laser programs in China[C]//Proceedings of SPIE 2096, Lasers in Optical Systems and Devices. 1994: 33-38.
    [31] Peng Hansheng. Inertial confinement fusion program at CAEP[J]. AIP Conference Proceedings, 1996, 369(1): 61-70. doi: 10.1063/1.50487
    [32] Peng Hansheng, Zhang Xiaomin, Wei Xiaofeng, et al. Overview of the solid state laser projects for ICF applications at CAEP[C]//Proceedings of SPIE 3683, Laser Optics '98: Superstrong Laser Fields and Applications. 1998: 120-127.
    [33] Zhang Jie, Gu Y Q, Li Y J, et al. Research on efficient X-ray lasing at XingGuang II Laser Facility[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(6): 1469-1474. doi: 10.1109/2944.814986
    [34] Zhao Zongqing, Ding Yongkun, Dong Jianjun, et al. Richardson–Lucy method for decoding x-ray ring code image[J]. Plasma Physics and Controlled Fusion, 2007, 49(8): 1145-1150. doi: 10.1088/0741-3335/49/8/003
    [35] Peng Hansheng, Huang Xiaojun, Zhu Qihua, et al. 286-TW Ti: sapphire laser at CAEP[C]//Proceedings of SPIE 5627, High-Power Lasers and Applications III. 2005: 1-5.
    [36] Peng H S, Huang X J, Zhu Q H, et al. SILEX-I: 300-TW Ti: sapphire laser[J]. Laser Physics, 2006, 16(2): 244-247. doi: 10.1134/S1054660X0602006X
    [37] Zhu Qihua, Peng Hansheng, Wei Xiaofeng, et al. Introduction of SILEX-I Femto-second Ti: sapphire laser facility[J]. Journal of Physics: Conference Series, 2007, 72: 012009. doi: 10.1088/1742-6596/72/1/012009
    [38] Hong W, He Y, Wen T, et al. Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse[J]. Laser and Particle Beams, 2009, 27(1): 19-26. doi: 10.1017/S0263034609000032
    [39] Gao Yulin, Zhou Weimin, Wei Lai, et al. Diagnosis of the soft X-ray spectrum emitted by laser-plasmas using a spectroscopic photon sieve[J]. Laser and Particle Beams, 2012, 30(2): 313-317. doi: 10.1017/S0263034612000080
    [40] 亀島敬, カメシマタカシ. GeV-class high quality electron beams accelerated by laser wakefield in capillary discharge plasma[J]. 2009.
    [41] Dong Jun, Peng Zhitao, Lu Zhonggui, et al. Transient measurement of Laser wakefield at the SILEX-I: Ti: sapphire laser[C]//Proceedings of the Conference on Lasers and Electro-Optics 2012. 2012: JTh2A. 21.
    [42] Wang Changjun, Peng Yongjin, Liu Yuling, et al. Study of a high-energy proton beam produced by ultra-intense pulse laser[J]. Journal of Russian Laser Research, 2017, 38(4): 357-363. doi: 10.1007/s10946-017-9653-5
    [43] 李勇, 洪伟, 吴玉迟, 等. 超薄靶激光质子加速实验研究[J]. 强激光与粒子束, 2010, 22(5): 1001-1004 doi: 10.3788/HPLPB20102205.1001

    Li Yong, Hong Wei, Wu Yuchi, et al. Experimental study of laser-driven proton acceleration with ultrathin targets[J]. High Power Laser and Particle Beams, 2010, 22(5): 1001-1004 doi: 10.3788/HPLPB20102205.1001
    [44] 邓才波, 陈家斌, 吴玉迟, 等. SILEX-I装置上激光-团簇聚变实验中子产额测量[J]. 强激光与粒子束, 2011, 23(6): 1645-1648 doi: 10.3788/HPLPB20112306.1645

    Deng Caibo, Chen Jiabin, Wu Yuchi, et al. Diagnosing neutron yield for interaction of laser-cluster in SILEX-I[J]. High Power Laser and Particle Beams, 2011, 23(6): 1645-1648 doi: 10.3788/HPLPB20112306.1645
    [45] Zhu Qihua, Zhou Kainan, Su Jingqin, et al. The XingGuang-III laser facility: Precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 2018, 15: 015301. doi: 10.1088/1612-202X/aa94e9
    [46] Wu Yuchi, Zhu Bin, Dong Kegong, et al. XingGuang III laser facility and its experimental ability to drive high-energy particle beams[J]. Laser Physics, 2020, 30: 096001. doi: 10.1088/1555-6611/aba3ca
    [47] Zhou Kainan, Huang Xiaojun, Zeng Xiaoming, et al. Improvement of focusing performance for a multi-petawatt OPCPA laser facility[J]. Laser Physics, 2018, 28: 125301. doi: 10.1088/1555-6611/aae0db
    [48] 李纲, 周凯南, 朱斌, 等. 拍瓦级光参量啁啾脉冲放大系统中光参量相位演化研究[J]. 中国激光, 2024, 51: 0601005 doi: 10.3788/CJL230836

    Li Gang, Zhou Kainan, Zhu Bin, et al. Investigation on optical parametric phase evolution in Petawatt optical parametric chirped pulse amplifier system[J]. Chinese Journal of Lasers, 2024, 51: 0601005 doi: 10.3788/CJL230836
    [49] 李纲, 郭仪, 曾小明, 等. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究[J]. 物理学报, 2022, 71: 074203 doi: 10.7498/aps.71.20211961

    Li Gang, Guo Yi, Zeng Xiaoming, et al. Investigation of active pump-signal synchronization technique for a ps-pulse pumped OPCPA[J]. Acta Physica Sinica, 2022, 71: 074203 doi: 10.7498/aps.71.20211961
    [50] Hong Wei, He Shukai, Teng Jian, et al. Commissioning experiment of the high-contrast SILEX-II multi-petawatt laser facility[J]. Matter and Radiation at Extremes, 2021, 6: 064401. doi: 10.1063/5.0016019
    [51] Veisz L, Theobald W, Feurer T, et al. Three-halves harmonic emission from femtosecond laser produced plasmas with steep density gradients[J]. Physics of Plasmas, 2004, 11(6): 3311-3323. doi: 10.1063/1.1748174
    [52] Haines M G, Wei Mingsheng, Beg F N, et al. Hot-electron temperature and laser-light absorption in fast ignition[J]. Physical Review Letters, 2009, 102: 045008. doi: 10.1103/PhysRevLett.102.045008
    [53] Kluge T, Cowan T, Debus A, et al. Electron temperature scaling in laser interaction with solids[J]. Physical Review Letters, 2011, 107: 205003. doi: 10.1103/PhysRevLett.107.205003
    [54] Zhao Zhongai, He Shukai, An Honghai, et al. Laboratory evidence of Weibel magnetogenesis driven by temperature gradient using three-dimensional synchronous proton radiography[J]. Science Advances, 2024, 10: eadk5229. doi: 10.1126/sciadv.adk5229
    [55] Ren Jieru, Deng Zhigang, Qi Wei, et al. Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter[J]. Nature Communications, 2020, 11: 5157. doi: 10.1038/s41467-020-18986-5
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-01
  • 修回日期:  2025-01-08
  • 录用日期:  2025-12-16
  • 网络出版日期:  2026-01-28

目录

    /

    返回文章
    返回