留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高分辨极紫外光谱仪研制和性能测试

陈勇 杨雷 卢峰 王少义 杨祖华 范全平 魏来

陈勇, 杨雷, 卢峰, 等. 超高分辨极紫外光谱仪研制和性能测试[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250393
引用本文: 陈勇, 杨雷, 卢峰, 等. 超高分辨极紫外光谱仪研制和性能测试[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250393
Chen Yong, Yang Lei, Lu Feng, et al. Development and performance test of a high resolution extreme ultraviolet spectroscopy system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250393
Citation: Chen Yong, Yang Lei, Lu Feng, et al. Development and performance test of a high resolution extreme ultraviolet spectroscopy system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250393

超高分辨极紫外光谱仪研制和性能测试

doi: 10.11884/HPLPB202638.250393
基金项目: 国家磁约束核聚变能发展研究专项(2022YFE03200200),等离子体物理重点实验室基金项目(6142A04240302)
详细信息
    作者简介:

    陈 勇,hanhaipaopao@163.com

  • 中图分类号: O434.12;O433.4

Development and performance test of a high resolution extreme ultraviolet spectroscopy system

  • 摘要: 针对磁约束聚变氦杂质谱线的高精度现场检测需求,研制了一套超高分辨极紫外光谱系统。该光谱仪采用掠入射Czerny-Turner型结构,通过可调入射狭缝调节光通量与光谱分辨。基于像差理论,对系统的光谱分辨率进行了计算分析。利用自研的光学设计软件开展了光线追迹仿真,仿真结果表明其光谱分辨优于20 000。利用微波等离子体光源进行了波长标定与性能测试,实验结果表明光谱仪在He II(30.3786 nm)处光谱分辨为0.001 4 nm,满足激光诱导极紫外光谱的高精度分析要求。
  • 图  1  超高分辨光谱仪光路原理图

    Figure  1.  Optical scheme of extreme ultraviolet spectroscopy

    图  2  光谱分辨率计算结果

    Figure  2.  Spectral resolution calculation results

    图  3  光谱仪在不同波长处的仿真结果

    Figure  3.  Simulated results at different wavelength

    图  4  光谱仪设计结构图

    Figure  4.  Design structure diagram of the extreme ultraviolet spectroscopy

    图  5  极紫外光谱仪光谱分辨测试结果

    Figure  5.  Results of the extreme ultraviolet spectroscopy resolution

    表  1  微波等离子体光源氦特征谱线

    Table  1.   He spectral line of microwave plasma light sourc

    No. photon energy/eV wavelength/nm energy level transition
    1 21.218 0 58.433 4 He I:1s2p (1P10) →1s2(1S0)
    2 23.087 0 53.703 0 He I:1s3p (1P10) →1s2(1S0)
    3 23.742 1 52.221 3 He I:1s4p (1P10) →1s2(1S0)
    4 40.813 0 30.378 6 He II:2p (2P1/20) →1s(2S1/2)
    2p (2P3/20) →1s(2S1/2)
    5 48.371 4 25.631 7 He II:3p (2P1/20) →1s(2S1/2)
    3p (2P3/20) →1s(2S1/2)
    6 51.016 6 24.302 7 He II:4p (2P1/20) →1s(2S1/2)
    4p (2P3/20) →1s(2S1/2)
    7 52.241 0 23.733 1 He II:5p (2P1/20) →1s(2S1/2)
    5p (2P3/20) →1s(2S1/2)
    下载: 导出CSV
  • [1] Chen Jiale, Jia Guozhang, Xiang Nong. Recent progress in modeling of CFETR plasma profiles from core to edge[J]. Journal of Fusion Energy, 2021, 40: 1. doi: 10.1007/s10894-021-00292-7
    [2] Philipps V, Malaquias A, Hakola A, et al. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices[J]. Nuclear Fusion, 2013, 53: 093002. doi: 10.1088/0029-5515/53/9/093002
    [3] Zhao Dongye, Li Cong, Hu Zhenhua, et al. Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak[J]. Review of Scientific Instruments, 2018, 89: 073501. doi: 10.1063/1.5024848
    [4] Wu Ding, Sun Liying, Liu Jiamin, et al. Parameter optimization of the spectral emission of laser-induced tungsten plasma for tokamak wall diagnosis at different pressures[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(6): 1159-1169. doi: 10.1039/D1JA00009H
    [5] 郭连波, 牛雪晨, 张猛胜, 等. 激光诱导击穿光谱技术应用研究进展(特邀)[J]. 光子学报, 2023, 52: 0352104 doi: 10.3788/gzxb20235203.0352104

    Guo Lianbo, Niu Xuechen, Zhang Mengsheng, et al. Analysis of the application progress in laser-induced breakdown spectroscopy: a review (invited)[J]. Acta Photonica Sinica, 2023, 52: 0352104 doi: 10.3788/gzxb20235203.0352104
    [6] 李祥友, 刘可, 周冉, 等. 激光诱导击穿光谱技术及应用综述[J]. 中国激光, 2022, 49: 1202003 doi: 10.3788/CJL202249.1202003

    Li Xiangyou, Liu Ke, Zhou Ran, et al. Laser-induced breakdown spectroscopy and its application[J]. Chinese Journal of Lasers, 2022, 49: 1202003 doi: 10.3788/CJL202249.1202003
    [7] Zhao Dongye, Farid N, Hai Ran, et al. Diagnostics of first wall materials in a magnetically confined fusion device by polarization-resolved laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. doi: 10.1088/1009-0630/16/2/11
    [8] Zhao Dongye, Li Cong, Wang Yong, et al. Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20: 014022. doi: 10.1088/2058-6272/aa96a0
    [9] 姚胤旭, 邱荣, 万情, 等. 基于激光诱导击穿光谱的基体效应[J]. 强激光与粒子束, 2023, 35: 111004 doi: 10.11884/HPLPB202335.230126

    Yao Yinxu, Qiu Rong, Wan Qing, et al. Matrix effect based on laser-induced breakdown spectroscopy[J]. High Power Laser and Particle Beams, 2023, 35: 111004 doi: 10.11884/HPLPB202335.230126
    [10] Bleiner D, Qu Di, Kraft K, et al. Laser-induced XUV spectroscopy (LIXS): from fundamentals to application for high-precision LIBS[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2023, 204: 106668. doi: 10.1016/j.sab.2023.106668
    [11] Qu Di, Trottmann M, Wyder C, et al. Dual spectrometer for simultaneous visible and extreme ultraviolet LIBS[C]//Proceedings Volume 11886, International Conference on X-Ray Lasers 2020. 2020: 118860X.
    [12] Garakhin S A, Chkhalo N I, Kas’kov I A, et al. High-resolution laboratory reflectometer for the study of x-ray optical elements in the soft and extreme ultraviolet wavelength ranges[J]. Review of Scientific Instruments, 2020, 91: 063103. doi: 10.1063/1.5144489
    [13] Wünsche M, Fuchs S, Weber T, et al. A high resolution extreme ultraviolet spectrometer system optimized for harmonic spectroscopy and XUV beam analysis[J]. Review of Scientific Instruments, 2019, 90: 023108. doi: 10.1063/1.5054116
    [14] 段紫雯, 邢阳光, 彭吉龙, 等. 太阳短波极紫外双波段成像光谱仪设计[J]. 光学学报, 2024, 44: 1223001 doi: 10.3788/AOS231371

    Duan Ziwen, Xing Yangguang, Peng Jilong, et al. Design for solar short extreme ultraviolet dual-waveband imaging spectrometer[J]. Acta Optica Sinica, 2024, 44: 1223001 doi: 10.3788/AOS231371
    [15] 张雨佳, 梁贵云. 天体高分辨率软X射线光谱的实验测量标定[J]. 天文研究与技术, 2021, 18(3): 362-371 doi: 10.14005/j.cnki.issn1672-7673.20201112.002

    Zhang Yujia, Liang Guiyun. Experimental measurement and calibration of celestial bodies with high resolution soft X-ray radiation[J]. Astronomical Research & Technology, 2021, 18(3): 362-371 doi: 10.14005/j.cnki.issn1672-7673.20201112.002
    [16] 杜学维, 沈永才, 李朝阳, 等. 极紫外平场光栅光谱仪的研制和性能测试[J]. 光谱学与光谱分析, 2012, 32(8): 2270-2274 doi: 10.3964/j.issn.1000-0593(2012)08-2270-05

    Du Xuewei, Shen Yongcai, Li Chaoyang, et al. EUV flat field grating spectrometer and performance measurement[J]. Spectroscopy and Spectral Analysis, 2012, 32(8): 2270-2274 doi: 10.3964/j.issn.1000-0593(2012)08-2270-05
    [17] Jark W. A high-efficiency and high-spectral-resolution EUV/soft X-ray monochromator based on off-plane diffraction[J]. Journal of Synchrotron Radiation, 2020, 27(1): 25-30. doi: 10.1107/S1600577519014462
    [18] Li Chaoyang, Wei Shen, Du Xuewei, et al. On-line spectral diagnostic system for Dalian coherent light source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 783: 65-67. doi: 10.1016/j.nima.2015.01.089
    [19] Yang Zhicheng, Zhang Ximing, Geng Heping, et al. Development and commissioning of a broadband online X-ray spectrometer for the SXFEL Facility[J]. Journal of Synchrotron Radiation, 2024, 31(5): 1373-1381. doi: 10.1107/S1600577524005812
    [20] 李明, 吴介立, 吴永前, 等. X射线反射镜研制技术的现状和发展[J]. 光电工程, 2020, 47: 200205 doi: 10.12086/oee.2020.200205

    Li Ming, Wu Jieli, Wu Yongqian, et al. A review on the fabrication technology of X-ray reflector[J]. Opto-Electronic Engineering, 2020, 47: 200205 doi: 10.12086/oee.2020.200205
    [21] 杨祖华, 周维民, 李鹏飞, 等. 光学设计软件X-LAB及其工程化应用[J]. 强激光与粒子束, 2018, 30: 112002 doi: 10.11884/HPLPB201830.180207

    Yang Zuhua, Zhou Weimin, Li Pengfei, et al. Optical simulation software X-LAB and its applications[J]. High Power Laser and Particle Beams, 2018, 30: 112002 doi: 10.11884/HPLPB201830.180207
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-03
  • 修回日期:  2025-12-24
  • 录用日期:  2025-12-08
  • 网络出版日期:  2026-01-07

目录

    /

    返回文章
    返回