留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惯性约束聚变用低密度聚合物泡沫掺杂研究现状

石宝龙 周秀文 晏良宏 王维仁 张海军

石宝龙, 周秀文, 晏良宏, 等. 惯性约束聚变用低密度聚合物泡沫掺杂研究现状[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250403
引用本文: 石宝龙, 周秀文, 晏良宏, 等. 惯性约束聚变用低密度聚合物泡沫掺杂研究现状[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250403
Shi Baolong, Zhou Xiuwen, Yan Lianghong, et al. Research status of doped low-density polymer foams for inertial confinement fusion[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250403
Citation: Shi Baolong, Zhou Xiuwen, Yan Lianghong, et al. Research status of doped low-density polymer foams for inertial confinement fusion[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250403

惯性约束聚变用低密度聚合物泡沫掺杂研究现状

doi: 10.11884/HPLPB202638.250403
基金项目: 国家自然科学基金项目(52372238)
详细信息
    作者简介:

    石宝龙,shibaolong24@gscaep.ac.cn

    通讯作者:

    张海军,Luckynavyboy@163.com

  • 中图分类号: TB324

Research status of doped low-density polymer foams for inertial confinement fusion

  • 摘要: 在惯性约束聚变(ICF)实验中,可通过在低密度聚合物泡沫中引入氯、氩、锗、铜等元素来调控辐射不透明度、改善流体力学稳定性及实现温度、密度示踪诊断。本文综述了掺杂聚合物泡沫的制备研究现状,分析了当前掺杂过程中存在的问题,并展望了未来面向高重复频率、高掺杂精度需求的技术发展趋势。该综述可为ICF实验靶材料的设计与制备提供参考。
  • 图  1  颗粒分散法示意图

    Figure  1.  Schematic diagrams of particle dispersion methods

    图  2  物理气相沉积掺杂示意图

    Figure  2.  Schematic diagram of physical vapor deposition doping

    图  3  化学掺杂的原理示意图

    Figure  3.  Schematic diagram of the principle of chemical doping

    图  4  含Sn的PDCPD气凝胶制备原理图与显微照片[2]

    Figure  4.  Schematic diagram for the preparation of Sn-containing PDCPD aerogel and its micrograph[2]

    图  5  由25个子块构成的层级密度泡沫[37]

    Figure  5.  A hierarchical density foam structure composed of 25 sub-blocks[37]

    图  6  离子注入的SiO2气凝胶[39]

    Figure  6.  Ion implanted silica aerogel cylinder[39]

  • [1] Elliott N E, Mitchell M A. Characterization of density and metal content in low density foam targets for inertial confinement fusion[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 362(1): 112-113. doi: 10.1016/0168-9002(95)00236-7
    [2] Kim S H, Shin S J, Lenhardt J M, et al. Deterministic control over high-Z doping of polydicyclopentadiene-based aerogel coatings[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 8111-8119. doi: 10.1021/am4021878
    [3] Hamilton C E, Honnell D, Patterson B M, et al. Incorporation of tracer elements within aerogels and CH foams[J]. Fusion Science and Technology, 2011, 59(1): 194-198. doi: 10.13182/FST59-194
    [4] 王绍君. 激光惯性约束聚变压缩过程中激波相互作用的研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2023

    Wang Shaojun. Study of shock interactions during compression process in laser inertial confinement fusion[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics CAS), 2023
    [5] 侯海乾. 激光聚变靶用RF气凝胶空心微球制备的研究[D]. 绵阳: 西南科技大学, 2009

    Hou Haiqian. The research of preparation resorcinol-formaldehyde aerogel hollow microspheres used for laser fusion targets[D]. Mianyang: Southwest University of Science and Technology, 2009
    [6] 张林, 王朝阳, 罗炫, 等. 热诱导倒相法超低密度PMP泡沫的研制[J]. 中国核科技报告, 2003(1): 131-144

    Zhang Lin, Wang Chaoyang, Luo Xuan, et al. Development on the fabrication of ultra-low density ploy(4-methyl-1-pentene)(PMP) foams by thermal induced phase-inversion technique[J]. China Nuclear Science and Technology Report, 2003(1): 131-144
    [7] Zhang Qin, Li Keran, Li Jing. Superhydrophobic polystyrene foam with photothermal effect for continuous and long-term efficient oil–water separation[J]. Separation and Purification Technology, 2025, 364: 132385. doi: 10.1016/j.seppur.2025.132385
    [8] Zhang Qin, Li Keran, Li Jing, et al. Fabrication of hierarchically porous superhydrophobic polystyrene foam for self-cleaning, oil absorbent, highly efficient oil–water separation[J]. Chemical Engineering Journal, 2024, 483: 149338. doi: 10.1016/j.cej.2024.149338
    [9] 肖德龙, 丁宁, 王冠琼, 等. Z箍缩聚变及高能量密度应用研究进展[J]. 强激光与粒子束, 2020, 32: 092005 doi: 10.11884/HPLPB202032.200094

    Xiao Delong, Ding Ning, Wang Guanqiong, et al. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 2020, 32: 092005 doi: 10.11884/HPLPB202032.200094
    [10] Croix C, Sauvage C E, Balland-Longeau A, et al. New gold-doped foams by copolymerization of organogold(I) monomers for inertial confinement fusion (ICF) targets[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18(3): 334-343. doi: 10.1007/s10904-008-9204-1
    [11] Cook R, Overturf G E, Buckley S R, et al. Production and characterization of doped mandrels for inertial-confinement fusion experiments[J]. Journal of Vacuum Science & Technology A, 1994, 12(4): 1275-1280. doi: 10.1116/1.579308
    [12] 乔秀梅, 郑无敌, 高耀明, 等. 神光Ⅱ间接驱动内爆实验ArX射线谱线模拟研究[J]. 物理学报, 2012, 61(17): 339-344

    Qiao Xiumei, Zheng Wudi, Gao Yaoming, et al. Simulation of spectrum of doped Ar in indirectly driven implosion target[J]. Acta Physica Sinica, 2012, 61(17): 339-344
    [13] Barbeau Z, Raman K, Manuel M, et al. Design of a high energy density experiment to measure the suppression of hydrodynamic instability in an applied magnetic field[J]. Physics of Plasmas, 2022, 29: 012306. doi: 10.1063/5.0067124
    [14] 陈诗佳, 张华, 周沧涛, 等. 利用掺杂层研究磁化靶中的能斯特效应[J]. 强激光与粒子束, 2024, 36: 092002

    Chen Shijia, Zhang Hua, Zhou Cangtao, et al. Nernst effects study using dopant layer on magnetized target[J]. High Power Laser and Particle Beams, 2024, 36: 092002
    [15] Regan S P, Epstein R, Hammel B A, et al. Hot-spot mix in ignition-scale implosions on the NIF[J]. Physics of Plasmas, 2012, 19: 056307. doi: 10.1063/1.3694057
    [16] Dewald E L, Pino J E, Tipton R E, et al. Pushered single shell implosions for mix and radiation trapping studies using high-Z layers on National Ignition Facility[J]. Physics of Plasmas, 2019, 26: 072705. doi: 10.1063/1.5109426
    [17] Hibbard R L, Bono M J, Amendt P A, et al. Precision manufacturing of inertial confinement fusion double shell laser targets for OMEGA[J]. Fusion Science and Technology, 2004, 45(2): 117-123. doi: 10.13182/fst04-a437
    [18] 刘才林, 唐永健, 李怀曾. 惯性约束聚变靶材料掺杂技术综述[J]. 原子能科学技术, 1996, 30(1): 90-96

    Liu Cailin, Tang Yongjian, Li Huaizeng. The doping techniques of inertial confinement fusion target materials[J]. Atomic Energy Science and Technology, 1996, 30(1): 90-96
    [19] Xiong W, Yang X H, Zhang G B, et al. The effect of high-Z dopant on the ablation of carbon–hydrogen polymer target[J]. Plasma Physics and Controlled Fusion, 2024, 66: 095002. doi: 10.1088/1361-6587/ad6264
    [20] 张庆军, 罗炫, 李泽甫, 等. μm量级钨掺杂PMP泡沫制备[J]. 强激光与粒子束, 2013, 25(11): 2905-2908 doi: 10.3788/HPLPB20132511.2905

    Zhang Qingjun, Luo Xuan, Li Zefu, et al. Preparation of tungsten-doped PMP foams in micron dimension[J]. High Power Laser and Particle Beams, 2013, 25(11): 2905-2908 doi: 10.3788/HPLPB20132511.2905
    [21] 方瑜, 罗炫, 张庆军. 低密度PMP聚合物泡沫成型控制[J]. 强激光与粒子束, 2013, 25(11): 2873-2876 doi: 10.3788/HPLPB20132511.2873

    Fang Yu, Luo Xuan, Zhang Qingjun. Fabrication control of low density PMP foams[J]. High Power Laser and Particle Beams, 2013, 25(11): 2873-2876 doi: 10.3788/HPLPB20132511.2873
    [22] 罗炫, 张林, 杜凯, 等. 低密度对二乙烯基苯泡沫的优化制备[J]. 强激光与粒子束, 2010, 22(1): 63-67 doi: 10.3788/HPLPB20102201.0063

    Luo Xuan, Zhang Lin, Du Kai, et al. Fabrication of low density p-divinylbenzene foams[J]. High Power Laser and Particle Beams, 2010, 22(1): 63-67 doi: 10.3788/HPLPB20102201.0063
    [23] 林润雄, 崔轶, 刘磊, 等. 低密度二乙烯基苯泡沫的制备及成型[J]. 材料科学与工程学报, 2010, 28(2): 222-225

    Lin Runxiong, Cui Yi, Liu Lei, et al. Fabrication and molding of low density divinylbenzene foams by ICF[J]. Journal of Materials Science and Engineering, 2010, 28(2): 222-225
    [24] 崔轶, 范勇恒, 罗炫, 等. DVB泡沫微胶囊的制备方法[J]. 高分子材料科学与工程, 2010, 26(6): 130-133

    Cui Yi, Fan Yongheng, Luo Xuan, et al. A method to make divinylbenzene foam shells by ICF target[J]. Polymer Materials Science & Engineering, 2010, 26(6): 130-133
    [25] 罗炫, 方瑜, 范勇恒, 等. 氘代对二乙烯基苯的合成[J]. 化学试剂, 2009, 31(12): 974-976,984

    Luo Xuan, Fang Yu, Fan Yongheng, et al. Synthesis of deuterated p-divinylbenzene[J]. Chemical Reagents, 2009, 31(12): 974-976,984
    [26] 罗炫, 方瑜, 范勇恒, 等. 低密度氘代对二乙烯基苯泡沫的研制[J]. 核化学与放射化学, 2010, 32(2): 126-128

    Luo Xuan, Fang Yu, Fan Yongheng, et al. Fabrication of low-density perdeuterated p-divinylbenzene foams[J]. Journal of Nuclear and Radiochemistry, 2010, 32(2): 126-128
    [27] 张林, 罗炫, 杜凯. ICF靶低密度聚合物多孔材料研究进展[J]. 材料导报, 2002, 16(6): 48-51 doi: 10.3321/j.issn:1005-023X.2002.06.014

    Zhang Lin, Luo Xuan, Du Kai. Progress in research on low-density porous polymer for ICF targets[J]. Materials Reports, 2002, 16(6): 48-51 doi: 10.3321/j.issn:1005-023X.2002.06.014
    [28] 高莎莎, 吴小军, 何智兵, 等. 激光惯性约束聚变靶制备技术研究进展[J]. 强激光与粒子束, 2020, 32: 032001 doi: 10.11884/HPLPB202032.200039

    Gao Shasha, Wu Xiaojun, He Zhibing, et al. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32: 032001 doi: 10.11884/HPLPB202032.200039
    [29] Steckle Jr W P, Nobile Jr A. Low-density materials for use in inertial fusion targets[J]. Fusion Science and Technology, 2003, 43(3): 301-306. doi: 10.13182/FST43-301
    [30] 方瑜, 罗炫, 范勇恒, 等. 纳米金掺杂DVB聚合物泡沫的制备[J]. 原子能科学技术, 2009, 43(11): 987-991

    Fang Yu, Luo Xuan, Fan Yongheng, et al. Fabrication of gold nanoparticles doped DVB foams[J]. Atomic Energy Science and Technology, 2009, 43(11): 987-991
    [31] 刘小林, 张庆军, 张勇, 等. 纳米金掺杂DVB泡沫微球的制备[J]. 功能材料, 2021, 52(2): 2185-2190 doi: 10.3969/j.issn.1001-9731.2021.02.025

    Liu Xiaolin, Zhang Qingjun, Zhang Yong, et al. Fabrication of gold nanoparticles doped DVB foam microspheres for inertial confinement fusion (ICF) target[J]. Journal of Functional Materials, 2021, 52(2): 2185-2190 doi: 10.3969/j.issn.1001-9731.2021.02.025
    [32] 尹强, 张林, 罗炫, 等. 溴掺杂低密度PMP泡沫的制备技术研究[J]. 强激光与粒子束, 2005, 17(5): 700-702

    Yin Qiang, Zhang Lin, Luo Xuan, et al. Synthesis of low-density bromine doped PMP foam[J]. High Power Laser and Particle Beams, 2005, 17(5): 700-702
    [33] 黄传群, 罗炫, 方瑜, 等. 锗掺杂聚合物及其泡沫的制备与表征[J]. 强激光与粒子束, 2013, 25(12): 3239-3242 doi: 10.3788/HPLPB20132512.3239

    Huang Chuanqun, Luo Xuan, Fang Yu, et al. Fabrication and characterization of Ge-doped polymer and foam[J]. High Power Laser and Particle Beams, 2013, 25(12): 3239-3242 doi: 10.3788/HPLPB20132512.3239
    [34] 尹强, 张林, 杜凯, 等. 掺溴聚-4-甲基-1-戊烯的合成研究[J]. 强激光与粒子束, 2004, 16(5): 627-629

    Yin Qiang, Zhang Lin, Du Kai, et al. Preparation and investigation of brominated poly-4-methyl-1-pentene as target material[J]. High Power Laser and Particle Beams, 2004, 16(5): 627-629
    [35] Moreau L, Levassort C, Blondel B, et al. Recent advances in development of materials for laser target[J]. Laser and Particle Beams, 2009, 27(4): 537-544. doi: 10.1017/S0263034609000317
    [36] Han Wenjing, Li Jianying, Ju Hui, et al. Nitrogen-doped graphitic carbon-CoTe2 decorated on carbon aerogel microspheres as a high-rate and ultra-stable electrode for efficient capacitive storage[J]. ChemistrySelect, 2024, 9: e202405427.
    [37] Jiang L J, Campbell J H, Lu Y F, et al. Direct writing target structures by two-photon polymerization[J]. Fusion Science and Technology, 2016, 70(2): 295-309. doi: 10.13182/FST15-222
    [38] Wei Lai, Li Jing, Zhang Shuai, et al. Construction of EG/SiOC@C porous structure by direct ink writing and in-situ vapor self - Deposition to enhance microwave absorption[J]. Ceramics International, 2023, 49(15): 25144-25155. doi: 10.1016/j.ceramint.2023.05.046
    [39] Hund J F, Paguio R R, Frederick C A, et al. Silica, metal oxide, and doped aerogel development for target applications[J]. Fusion Science and Technology, 2006, 49(4): 669-675. doi: 10.13182/FST06-A1184
    [40] Shin S J, Lee J R I, Van Buuren T, et al. Ion implantation doping of inertial confinement fusion targets[J]. Fusion Science and Technology, 2018, 73(3): 467-473. doi: 10.1080/15361055.2017.1392181
  • 加载中
图(6)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2026-11-01
  • 修回日期:  2026-01-08
  • 录用日期:  2025-12-30
  • 网络出版日期:  2026-01-28

目录

    /

    返回文章
    返回