| [1] |
Elliott N E, Mitchell M A. Characterization of density and metal content in low density foam targets for inertial confinement fusion[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 362(1): 112-113. doi: 10.1016/0168-9002(95)00236-7
|
| [2] |
Kim S H, Shin S J, Lenhardt J M, et al. Deterministic control over high-Z doping of polydicyclopentadiene-based aerogel coatings[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 8111-8119. doi: 10.1021/am4021878
|
| [3] |
Hamilton C E, Honnell D, Patterson B M, et al. Incorporation of tracer elements within aerogels and CH foams[J]. Fusion Science and Technology, 2011, 59(1): 194-198. doi: 10.13182/FST59-194
|
| [4] |
王绍君. 激光惯性约束聚变压缩过程中激波相互作用的研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2023Wang Shaojun. Study of shock interactions during compression process in laser inertial confinement fusion[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics CAS), 2023
|
| [5] |
侯海乾. 激光聚变靶用RF气凝胶空心微球制备的研究[D]. 绵阳: 西南科技大学, 2009Hou Haiqian. The research of preparation resorcinol-formaldehyde aerogel hollow microspheres used for laser fusion targets[D]. Mianyang: Southwest University of Science and Technology, 2009
|
| [6] |
张林, 王朝阳, 罗炫, 等. 热诱导倒相法超低密度PMP泡沫的研制[J]. 中国核科技报告, 2003(1): 131-144Zhang Lin, Wang Chaoyang, Luo Xuan, et al. Development on the fabrication of ultra-low density ploy(4-methyl-1-pentene)(PMP) foams by thermal induced phase-inversion technique[J]. China Nuclear Science and Technology Report, 2003(1): 131-144
|
| [7] |
Zhang Qin, Li Keran, Li Jing. Superhydrophobic polystyrene foam with photothermal effect for continuous and long-term efficient oil–water separation[J]. Separation and Purification Technology, 2025, 364: 132385. doi: 10.1016/j.seppur.2025.132385
|
| [8] |
Zhang Qin, Li Keran, Li Jing, et al. Fabrication of hierarchically porous superhydrophobic polystyrene foam for self-cleaning, oil absorbent, highly efficient oil–water separation[J]. Chemical Engineering Journal, 2024, 483: 149338. doi: 10.1016/j.cej.2024.149338
|
| [9] |
肖德龙, 丁宁, 王冠琼, 等. Z箍缩聚变及高能量密度应用研究进展[J]. 强激光与粒子束, 2020, 32: 092005 doi: 10.11884/HPLPB202032.200094Xiao Delong, Ding Ning, Wang Guanqiong, et al. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 2020, 32: 092005 doi: 10.11884/HPLPB202032.200094
|
| [10] |
Croix C, Sauvage C E, Balland-Longeau A, et al. New gold-doped foams by copolymerization of organogold(I) monomers for inertial confinement fusion (ICF) targets[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18(3): 334-343. doi: 10.1007/s10904-008-9204-1
|
| [11] |
Cook R, Overturf G E, Buckley S R, et al. Production and characterization of doped mandrels for inertial-confinement fusion experiments[J]. Journal of Vacuum Science & Technology A, 1994, 12(4): 1275-1280. doi: 10.1116/1.579308
|
| [12] |
乔秀梅, 郑无敌, 高耀明, 等. 神光Ⅱ间接驱动内爆实验ArX射线谱线模拟研究[J]. 物理学报, 2012, 61(17): 339-344Qiao Xiumei, Zheng Wudi, Gao Yaoming, et al. Simulation of spectrum of doped Ar in indirectly driven implosion target[J]. Acta Physica Sinica, 2012, 61(17): 339-344
|
| [13] |
Barbeau Z, Raman K, Manuel M, et al. Design of a high energy density experiment to measure the suppression of hydrodynamic instability in an applied magnetic field[J]. Physics of Plasmas, 2022, 29: 012306. doi: 10.1063/5.0067124
|
| [14] |
陈诗佳, 张华, 周沧涛, 等. 利用掺杂层研究磁化靶中的能斯特效应[J]. 强激光与粒子束, 2024, 36: 092002Chen Shijia, Zhang Hua, Zhou Cangtao, et al. Nernst effects study using dopant layer on magnetized target[J]. High Power Laser and Particle Beams, 2024, 36: 092002
|
| [15] |
Regan S P, Epstein R, Hammel B A, et al. Hot-spot mix in ignition-scale implosions on the NIF[J]. Physics of Plasmas, 2012, 19: 056307. doi: 10.1063/1.3694057
|
| [16] |
Dewald E L, Pino J E, Tipton R E, et al. Pushered single shell implosions for mix and radiation trapping studies using high-Z layers on National Ignition Facility[J]. Physics of Plasmas, 2019, 26: 072705. doi: 10.1063/1.5109426
|
| [17] |
Hibbard R L, Bono M J, Amendt P A, et al. Precision manufacturing of inertial confinement fusion double shell laser targets for OMEGA[J]. Fusion Science and Technology, 2004, 45(2): 117-123. doi: 10.13182/fst04-a437
|
| [18] |
刘才林, 唐永健, 李怀曾. 惯性约束聚变靶材料掺杂技术综述[J]. 原子能科学技术, 1996, 30(1): 90-96Liu Cailin, Tang Yongjian, Li Huaizeng. The doping techniques of inertial confinement fusion target materials[J]. Atomic Energy Science and Technology, 1996, 30(1): 90-96
|
| [19] |
Xiong W, Yang X H, Zhang G B, et al. The effect of high-Z dopant on the ablation of carbon–hydrogen polymer target[J]. Plasma Physics and Controlled Fusion, 2024, 66: 095002. doi: 10.1088/1361-6587/ad6264
|
| [20] |
张庆军, 罗炫, 李泽甫, 等. μm量级钨掺杂PMP泡沫制备[J]. 强激光与粒子束, 2013, 25(11): 2905-2908 doi: 10.3788/HPLPB20132511.2905Zhang Qingjun, Luo Xuan, Li Zefu, et al. Preparation of tungsten-doped PMP foams in micron dimension[J]. High Power Laser and Particle Beams, 2013, 25(11): 2905-2908 doi: 10.3788/HPLPB20132511.2905
|
| [21] |
方瑜, 罗炫, 张庆军. 低密度PMP聚合物泡沫成型控制[J]. 强激光与粒子束, 2013, 25(11): 2873-2876 doi: 10.3788/HPLPB20132511.2873Fang Yu, Luo Xuan, Zhang Qingjun. Fabrication control of low density PMP foams[J]. High Power Laser and Particle Beams, 2013, 25(11): 2873-2876 doi: 10.3788/HPLPB20132511.2873
|
| [22] |
罗炫, 张林, 杜凯, 等. 低密度对二乙烯基苯泡沫的优化制备[J]. 强激光与粒子束, 2010, 22(1): 63-67 doi: 10.3788/HPLPB20102201.0063Luo Xuan, Zhang Lin, Du Kai, et al. Fabrication of low density p-divinylbenzene foams[J]. High Power Laser and Particle Beams, 2010, 22(1): 63-67 doi: 10.3788/HPLPB20102201.0063
|
| [23] |
林润雄, 崔轶, 刘磊, 等. 低密度二乙烯基苯泡沫的制备及成型[J]. 材料科学与工程学报, 2010, 28(2): 222-225Lin Runxiong, Cui Yi, Liu Lei, et al. Fabrication and molding of low density divinylbenzene foams by ICF[J]. Journal of Materials Science and Engineering, 2010, 28(2): 222-225
|
| [24] |
崔轶, 范勇恒, 罗炫, 等. DVB泡沫微胶囊的制备方法[J]. 高分子材料科学与工程, 2010, 26(6): 130-133Cui Yi, Fan Yongheng, Luo Xuan, et al. A method to make divinylbenzene foam shells by ICF target[J]. Polymer Materials Science & Engineering, 2010, 26(6): 130-133
|
| [25] |
罗炫, 方瑜, 范勇恒, 等. 氘代对二乙烯基苯的合成[J]. 化学试剂, 2009, 31(12): 974-976,984Luo Xuan, Fang Yu, Fan Yongheng, et al. Synthesis of deuterated p-divinylbenzene[J]. Chemical Reagents, 2009, 31(12): 974-976,984
|
| [26] |
罗炫, 方瑜, 范勇恒, 等. 低密度氘代对二乙烯基苯泡沫的研制[J]. 核化学与放射化学, 2010, 32(2): 126-128Luo Xuan, Fang Yu, Fan Yongheng, et al. Fabrication of low-density perdeuterated p-divinylbenzene foams[J]. Journal of Nuclear and Radiochemistry, 2010, 32(2): 126-128
|
| [27] |
张林, 罗炫, 杜凯. ICF靶低密度聚合物多孔材料研究进展[J]. 材料导报, 2002, 16(6): 48-51 doi: 10.3321/j.issn:1005-023X.2002.06.014Zhang Lin, Luo Xuan, Du Kai. Progress in research on low-density porous polymer for ICF targets[J]. Materials Reports, 2002, 16(6): 48-51 doi: 10.3321/j.issn:1005-023X.2002.06.014
|
| [28] |
高莎莎, 吴小军, 何智兵, 等. 激光惯性约束聚变靶制备技术研究进展[J]. 强激光与粒子束, 2020, 32: 032001 doi: 10.11884/HPLPB202032.200039Gao Shasha, Wu Xiaojun, He Zhibing, et al. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32: 032001 doi: 10.11884/HPLPB202032.200039
|
| [29] |
Steckle Jr W P, Nobile Jr A. Low-density materials for use in inertial fusion targets[J]. Fusion Science and Technology, 2003, 43(3): 301-306. doi: 10.13182/FST43-301
|
| [30] |
方瑜, 罗炫, 范勇恒, 等. 纳米金掺杂DVB聚合物泡沫的制备[J]. 原子能科学技术, 2009, 43(11): 987-991Fang Yu, Luo Xuan, Fan Yongheng, et al. Fabrication of gold nanoparticles doped DVB foams[J]. Atomic Energy Science and Technology, 2009, 43(11): 987-991
|
| [31] |
刘小林, 张庆军, 张勇, 等. 纳米金掺杂DVB泡沫微球的制备[J]. 功能材料, 2021, 52(2): 2185-2190 doi: 10.3969/j.issn.1001-9731.2021.02.025Liu Xiaolin, Zhang Qingjun, Zhang Yong, et al. Fabrication of gold nanoparticles doped DVB foam microspheres for inertial confinement fusion (ICF) target[J]. Journal of Functional Materials, 2021, 52(2): 2185-2190 doi: 10.3969/j.issn.1001-9731.2021.02.025
|
| [32] |
尹强, 张林, 罗炫, 等. 溴掺杂低密度PMP泡沫的制备技术研究[J]. 强激光与粒子束, 2005, 17(5): 700-702Yin Qiang, Zhang Lin, Luo Xuan, et al. Synthesis of low-density bromine doped PMP foam[J]. High Power Laser and Particle Beams, 2005, 17(5): 700-702
|
| [33] |
黄传群, 罗炫, 方瑜, 等. 锗掺杂聚合物及其泡沫的制备与表征[J]. 强激光与粒子束, 2013, 25(12): 3239-3242 doi: 10.3788/HPLPB20132512.3239Huang Chuanqun, Luo Xuan, Fang Yu, et al. Fabrication and characterization of Ge-doped polymer and foam[J]. High Power Laser and Particle Beams, 2013, 25(12): 3239-3242 doi: 10.3788/HPLPB20132512.3239
|
| [34] |
尹强, 张林, 杜凯, 等. 掺溴聚-4-甲基-1-戊烯的合成研究[J]. 强激光与粒子束, 2004, 16(5): 627-629Yin Qiang, Zhang Lin, Du Kai, et al. Preparation and investigation of brominated poly-4-methyl-1-pentene as target material[J]. High Power Laser and Particle Beams, 2004, 16(5): 627-629
|
| [35] |
Moreau L, Levassort C, Blondel B, et al. Recent advances in development of materials for laser target[J]. Laser and Particle Beams, 2009, 27(4): 537-544. doi: 10.1017/S0263034609000317
|
| [36] |
Han Wenjing, Li Jianying, Ju Hui, et al. Nitrogen-doped graphitic carbon-CoTe2 decorated on carbon aerogel microspheres as a high-rate and ultra-stable electrode for efficient capacitive storage[J]. ChemistrySelect, 2024, 9: e202405427.
|
| [37] |
Jiang L J, Campbell J H, Lu Y F, et al. Direct writing target structures by two-photon polymerization[J]. Fusion Science and Technology, 2016, 70(2): 295-309. doi: 10.13182/FST15-222
|
| [38] |
Wei Lai, Li Jing, Zhang Shuai, et al. Construction of EG/SiOC@C porous structure by direct ink writing and in-situ vapor self - Deposition to enhance microwave absorption[J]. Ceramics International, 2023, 49(15): 25144-25155. doi: 10.1016/j.ceramint.2023.05.046
|
| [39] |
Hund J F, Paguio R R, Frederick C A, et al. Silica, metal oxide, and doped aerogel development for target applications[J]. Fusion Science and Technology, 2006, 49(4): 669-675. doi: 10.13182/FST06-A1184
|
| [40] |
Shin S J, Lee J R I, Van Buuren T, et al. Ion implantation doping of inertial confinement fusion targets[J]. Fusion Science and Technology, 2018, 73(3): 467-473. doi: 10.1080/15361055.2017.1392181
|