留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国原子能科学研究院强场激光物理研究及在核科学中的应用

李展鹏 吕冲 孙伟 席晓峰 赵保真 刘秋实 班晓娜 王远航 高智星 王钊 郭冰

李展鹏, 吕冲, 孙伟, 等. 中国原子能科学研究院强场激光物理研究及在核科学中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250407
引用本文: 李展鹏, 吕冲, 孙伟, 等. 中国原子能科学研究院强场激光物理研究及在核科学中的应用[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250407
Li Zhanpeng, Lv Chong, Sun Wei, et al. Research on high-intensity laser physics at the China Institute of Atomic Energy and its applications in nuclear science[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250407
Citation: Li Zhanpeng, Lv Chong, Sun Wei, et al. Research on high-intensity laser physics at the China Institute of Atomic Energy and its applications in nuclear science[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250407

中国原子能科学研究院强场激光物理研究及在核科学中的应用

doi: 10.11884/HPLPB202638.250407
基金项目: 国家科技部重点研发计划青年科学家项目(2024YFA1612700);国家自然科学基金杰出青年项目(12125509);核技术研发项目和重点项目(HJSYF2024(01),U2267204);财政部稳定支持经费项目(18BJ010261224900);中核集团“青年英才”菁英人才项目
详细信息
    作者简介:

    李展鹏,2195110219@stu.xjtu.edu.cn

    通讯作者:

    吕 冲,lvchong@ciae.ac.cn

    王 钊,wangz@ciae.ac.cn

    郭 冰,guobing@ciae.ac.cn

  • 中图分类号: TN24

Research on high-intensity laser physics at the China Institute of Atomic Energy and its applications in nuclear science

  • 摘要: 强激光技术是当前物理学与核科学的前沿领域,其通过啁啾脉冲放大技术在飞秒至阿秒时间尺度内产生极端光场强度,为研究强场量子电动力学、激光等离子体物理以及极端核环境提供了独特平台。本文系统介绍了中国原子能科学研究院核物理研究所激光核物理研究团队在百太瓦级超快超强激光装置研制、理论机制研究与实验技术等方面的进展,包括高对比度脉冲整形、粒子加速、高亮度偏振γ光源、激光光源研发以及等离子体靶参数诊断等。同时,阐述了强激光在极端等离子体环境模拟、高压物态方程、涡旋γ光与微观核靶相互作用、激光等离子体光谱等相关领域的重要应用。文章最后展望了新的发展方向,强调了强激光技术在推动核工业发展与基础核科学研究方面的重要价值。
  • 图  1  装置结构示意图[20]

    Figure  1.  Schematic diagram of the device structure[20]

    图  2  输入光束的光谱(蓝线),第一个晶体后的 XPW (黑线),以及两个晶体后的 XPW (红线)

    Figure  2.  Spectrum of the input beam (blue line), XPW after the first crystal (black line), and XPW after both crystals (red line)[21]

    图  3  三种模型的热焦距与输入功率的关系(a),三种模型激光器的输出镜透射率为 25% 时的输出功率与泵浦功率的函数关系(b),三种模型激光器的单脉冲能量随时间的变化(c)

    Figure  3.  Relationship between thermal focal length and input power for three models (a); Functional relationship between output power and pump power at 25% output mirror transmittance for three model lasers (b); Single-pulse energy variation over time for three model lasers (c)[25]

    图  4  激光与多层目标之间相互作用的示意图(a),红色锥体代表激光脉冲,(b)、(c)和(d)对应于不同激光器驱动模式的情况。

    Figure  4.  Schematic diagram of the interaction between laser and multilayer targets (a); The red cone represents the laser pulse. b, c and d correspond to the cases of different laser driving modes[32]

    图  5  不同激光驱动模式下t=60T0时电子(a)、质子(b)和C6+(c)能谱分布

    Figure  5.  Distribution of electron, proton and C6+ energy spectra at t =60T0 under different laser driving modes[32]

    图  6  t =30.0T0 (a)和 60T0(b)两个不同时间的不同 CH 层厚度质子能谱分布

    Figure  6.  The proton energy spectrum distributions depicted in (a) and (b) correspond to different CH layer thicknesses at two distinct time: t =30.0T0 and 60T0, respectively[32]

    图  7  传统的非线性康普顿散射和非线性Breit-Wheeler对产生装置(a),通过VD辅助VB效应生成圆偏振γ光子束装置(b)

    Figure  7.  Traditional nonlinear Compton scattering and nonlinear Breit-Wheeler pair production apparatus (a), circularly polarized γ photon beam apparatus generated via VD-assisted VB effects (b)[40]

    图  8  Nomarski干涉仪对等离子体(a)和超音速气体喷射靶(b)进行密度诊断示意图

    Figure  8.  Schematic of the Nomarski interferometer for density diagnostics of plasma (a) and supersonic gas jet targets (b)[51]

    图  9  两个干涉仪不同高度(红色/紫色/蓝色)的像素行(左),比较马赫-曾德干涉仪(蓝色)和诺马斯基干涉仪(红色)的平均强度(右)

    Figure  9.  Pixel rows at different heights for two interferometers (red/purple/blue) (left); Comparison of average intensities between the Mach-Zehnder interferometer (blue) and the Nomarski interferometer (red) (right)[51]

    图  10  比较Mach-Zehnder 部分(蓝色)和 Nomarski部分(红色)的相同像素的相移抖动

    Figure  10.  Phase jitter comparison between the Mach-Zehnder section (blue) and the Nomarski section (red) for identical pixels[51]

    图  11  252Cf标定实验示意图

    Figure  11.  Schematic diagram of the 252Cf calibration experiment[55]

    图  12  标定的PSD-TOF信号谱(a),中子标定结果图(b)。绿色线条是根据特定能量中子平均峰面积计算得出的误差条。红色十字标记为2.45 MeV中子的QDC位置,用于视觉定位。

    Figure  12.  Calibrated PSD-TOF signal spectrum (a), neutron calibration results diagram (b)[55]. The green line is the error bar calculated from the average peak area of neutrons with one specific energy. The red cross is the QDC of the 2.45 MeV neutron to guide the eyes

    表  1  中子闪烁体探测器标定方法的比较[55]

    Table  1.   Comparison of Calibration Methods for Neutron Scintillator Detectors

    model voltage/V neutron beam/V·ns
    (error/%)
    gated fission/V·ns
    (error/%)
    compton edge/V·ns
    (error/%)
    EJ301 1600 0.88(350) 0.93(46) 1.08(64)
    BC420-1 1300 0.65(50) 0.58(76)
    下载: 导出CSV
  • [1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [2] Bulgakov A V, Ryabchikov Y V, Levy Y, et al. The roadmap of new capabilities of high-intensity lasers in material design and manipulation[DB/OL]. arXiv preprint arXiv: 2509.17662, 2025.
    [3] 谷渝秋. 超热电子输运及相关现象研究[D]. 北京: 中国工程物理研究院, 2004

    Gu Yuqiu. Studies on hot electron transportation and its correlative phenomenons[D]. Beijing: China Institute of Engineering Physics, 2004
    [4] Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [5] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [6] 胡艳婷, 张昊, 邓宏祥, 等. 激光驱动离子加速的研究进展及其重要应用综述[J]. 中国激光, 2021, 48: 0401006 doi: 10.3788/CJL202148.0401006

    Hu Yanting, Zhang Hao, Deng Hongxiang, et al. Review of research developments and important applications of laser-driven ion acceleration[J]. Chinese Journal of Lasers, 2021, 48: 0401006 doi: 10.3788/CJL202148.0401006
    [7] Shen X F, Pukhov A, Qiao B. Monoenergetic high-energy ion source via femtosecond laser interacting with a microtape[J]. Physical Review X, 2021, 11: 041002. doi: 10.1103/physrevx.11.041002
    [8] Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 2013, 85(2): 751-793. doi: 10.1103/RevModPhys.85.751
    [9] Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 2013, 110: 044802. doi: 10.1103/PhysRevLett.110.044802
    [10] 齐伟, 贺书凯, 崔波, 等. 超短脉冲激光驱动束靶中子源产生及应用研究进展(特邀)[J]. 中国激光, 2024, 51: 0101004 doi: 10.3788/CJL231292

    Qi Wei, He Shukai, Cui Bo, et al. Research progress of beam-target neutron source and applications driven by ultra-short pulse lasers (invited)[J]. Chinese Journal of Lasers, 2024, 51: 0101004 doi: 10.3788/CJL231292
    [11] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [12] Corde S, Phuoc K T, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [13] Chen H, Wilks S C, Bonlie J D, et al. Making relativistic positrons using ultraintense short pulse lasers[J]. Physics of Plasmas, 2009, 16: 122702. doi: 10.1063/1.3271355
    [14] 朱兴龙, 王伟民, 余同普, 等. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展[J]. 物理学报, 2021, 70: 085202 doi: 10.7498/aps.70.20202224

    Zhu Xinglong, Wang Weimin, Yu Tongpu, et al. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields[J]. Acta Physica Sinica, 2021, 70: 085202 doi: 10.7498/aps.70.20202224
    [15] Zhang Feng, Deng Li, Ge Yanjie, et al. Proof-of-principle demonstration of muon production with an ultrashort high-intensity laser[J]. Nature Physics, 2025, 21(7): 1050-1056. doi: 10.1038/s41567-025-02872-2
    [16] Zhang Chuankun, Ooi T, Higgins J S, et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock[J]. Nature, 2024, 633(8028): 63-70. doi: 10.1038/s41586-024-07839-6
    [17] Tiedau J, Okhapkin M V, Zhang K, et al. Laser Excitation of the Th-229 Nucleus[J]. Physical Review Letters, 2024, 132: 182501. doi: 10.1103/PhysRevLett.132.182501
    [18] Strickland D. Nobel lecture: generating high-intensity ultrashort optical pulses[J]. Reviews of Modern Physics, 2019, 91: 030502. doi: 10.1103/RevModPhys.91.030502
    [19] Mourou G. Nobel lecture: extreme light physics and application[J]. Reviews of Modern Physics, 2019, 91: 030501. doi: 10.1103/RevModPhys.91.030501
    [20] 王钊, 贺创业, 赵保真, 等. 中国原子能科学研究院激光技术发展及其在核科学中的应用[J]. 原子能科学技术, 2020, 54(s1): 47-64 doi: 10.7538/yzk.2020.zhuankan.0403

    Wang Zhao, He Chuangye, Zhao Baozhen, et al. Development of laser technology and its application in nuclear science at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(s1): 47-64 doi: 10.7538/yzk.2020.zhuankan.0403
    [21] Zhao Baozhen, Zhang Xiaohua, Lv Chong, et al. Improved cross polarized wave generation with an aperture[J]. AIP Advances, 2022, 12: 055128. doi: 10.1063/5.0090066
    [22] Zhao Baozhen, Zhang Xiaohua, Lv Chong, et al. Broadband spectral shaping of regenerative amplification with extra-cavity waveplate for cross polarized wave generation[J]. Applied Sciences, 2022, 12: 5521. doi: 10.3390/app12115521
    [23] Zhang Xiang, Fincke J R, Wynn C M, et al. Full noncontact laser ultrasound: first human data[J]. Light: Science & Applications, 2019, 8: 119.
    [24] Młyńczak J, Kopczyński K, Mierczyk Z, et al. Practical application of pulsed “eye-safe” microchip laser to laser rangefinders[J]. Opto-Electronics Review, 2013, 21(3): 332-337. doi: 10.2478/s11772-013-0098-2
    [25] Ban Xiaona, Hui Yongling, Lv Chong, et al. Double-ended bonded F2 glass/Er3+, Yb3+: glass/Co2+: MgAl2O4 passive Q-switched micro laser[J]. Optics Communications, 2022, 502: 127399.
    [26] Cobble J A, Johnson R P, Cowan T E, et al. High resolution laser-driven proton radiography[J]. Journal of Applied Physics, 2002, 92(4): 1775-1779. doi: 10.1063/1.1494128
    [27] Mackinnon A J, Patel P K, Borghesi M, et al. Proton radiography of a laser-driven implosion[J]. Physical Review Letters, 2006, 97: 045001. doi: 10.1103/PhysRevLett.97.045001
    [28] Barberio M, Scisciò M, Vallières S, et al. Laser-accelerated particle beams for stress testing of materials[J]. Nature Communications, 2018, 9: 372. doi: 10.1038/s41467-017-02675-x
    [29] Fourkal E, Velchev I, Ma C M. Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers[J]. Physical Review E, 2005, 71: 036412. doi: 10.1103/PhysRevE.71.036412
    [30] Grech M, Nuter R, Mikaberidze A, et al. Coulomb explosion of uniformly charged spheroids[J]. Physical Review E, 2011, 84: 056404. doi: 10.1103/PhysRevE.84.056404
    [31] Martinkova M, Kalal M, Rhee Y J. Coulomb explosions of deuterium clusters studied by compact design of Nomarski interferometer[J]. Journal of Physics: Conference Series, 2010, 244: 032053. doi: 10.1088/1742-6596/244/3/032053
    [32] Lv Chong, Chai Jialun, Ban Xiaona, et al. Study on the coupling and ion acceleration between ultraintense laser and multilayer solid targets[J]. The European Physical Journal D, 2025, 79: 3. doi: 10.1140/epjd/s10053-024-00950-3
    [33] Vetter K, Barnowksi R, Haefner A, et al. Gamma-Ray imaging for nuclear security and safety: towards 3-D gamma-ray vision[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 878: 159-168.
    [34] Laurent P, Rodriguez J, Wilms J, et al. Polarized gamma-ray emission from the galactic black hole Cygnus X-1[J]. Science, 2011, 332(6028): 438-439. doi: 10.1126/science.1200848
    [35] Uggerhøj U I. The interaction of relativistic particles with strong crystalline fields[J]. Reviews of Modern Physics, 2005, 77(4): 1131-1171. doi: 10.1103/RevModPhys.77.1131
    [36] Li Jianxing, Hatsagortsyan K Z, Galow B J, et al. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation dominated regime[J]. Physical Review Letters, 2015, 115: 204801. doi: 10.1103/PhysRevLett.115.204801
    [37] Mackenroth F, Di Piazza A. Nonlinear double Compton scattering in the ultrarelativistic quantum regime[J]. Physical Review Letters, 2013, 110: 070402. doi: 10.1103/PhysRevLett.110.070402
    [38] Li Yanfei, Shaisultanov R, Chen Yueyue, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
    [39] Aleksandrov I A, Shabaev V M. Vacuum birefringence and dichroism in a strong plane-wave background[J]. Journal of Experimental and Theoretical Physics, 2024, 166(2): 182-193. doi: 10.31857/s0044451024080042
    [40] Lv Chong, Wan Feng, Salamin Y I, et al. Generation of high-brilliance polarized γ-rays via vacuum dichroism-assisted vacuum birefringence[J]. Advanced Science, 2025, 12: e17201.
    [41] Brandi F, Marsili P, Giammanco F, et al. Measurement of the particle number density in a pulsed flow gas cell with a second-harmonic interferometer[J]. Journal of Physics: Conference Series, 2018, 1079: 012006. doi: 10.1088/1742-6596/1079/1/012006
    [42] Wang W T, Li W T, Liu J S, et al. High-brightness high-energy electron beams from a laser Wakefield accelerator via energy chirp control[J]. Physical Review Letters, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
    [43] Prencipe I, Fuchs J, Pascarelli S, et al. Targets for high repetition rate laser facilities: needs, challenges and perspectives[J]. High Power Laser Science and Engineering, 2017, 5: e17. doi: 10.1017/hpl.2017.18
    [44] Mirzaie M, Li S, Zeng M, et al. Demonstration of self-truncated ionization injection for GeV electron beams[J]. Scientific Reports, 2015, 5: 14659. doi: 10.1038/srep14659
    [45] Feister S, Nees J A, Morrison J T, et al. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments[J]. Review of Scientific Instruments, 2014, 85: 11D602. doi: 10.1063/1.4886955
    [46] Sylla F, Veltcheva M, Kahaly S, et al. Development and characterization of very dense submillimetric gas jets for laser-plasma interaction[J]. Review of Scientific Instruments, 2012, 83: 033507. doi: 10.1063/1.3697859
    [47] Henares J L, Puyuelo-Valdes P, Hannachi F, et al. Development of gas jet targets for laser-plasma experiments at near-critical density[J]. Review of Scientific Instruments, 2019, 90: 063302. doi: 10.1063/1.5093613
    [48] Zhao J R, Zhang X P, Yuan D W, et al. A novel laser-collider used to produce monoenergetic 13.3 MeV 7Li (d, n) neutrons[J]. Scientific Reports, 2016, 6: 27363. doi: 10.1038/srep27363
    [49] Liu X, Li Y T, Zhang Y, et al. Collisionless shockwaves formed by counter-streaming laser-produced plasmas[J]. New Journal of Physics, 2011, 13: 093001. doi: 10.1088/1367-2630/13/9/093001
    [50] Zhao J R, Zhang X P, Yuan D W, et al. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target[J]. Review of Scientific Instruments, 2015, 86: 063505. doi: 10.1063/1.4922912
    [51] Liu Qiushi, Ma Mingjiang, Zhang Xiaohua, et al. Application of Nomarski interference system in supersonic gas-jet target diagnosis[J]. AIP Advances, 2021, 11: 015145. doi: 10.1063/5.0027317
    [52] Liu Qiushi, Ma Mingjiang, Zhao Baozhen, et al. Effect of multiple parameters on the supersonic gas-jet target characteristics for laser wakefield acceleration[J]. Nuclear Science and Techniques, 2021, 32: 75. doi: 10.1007/s41365-021-00910-1
    [53] Rezac K, Klir D, Kubes P, et al. Improvement of time-of-flight methods for reconstruction of neutron energy spectra from D(d, n)3 He fusion reactions[J]. Plasma Physics and Controlled Fusion, 2012, 54: 105011. doi: 10.1088/0741-3335/54/10/105011
    [54] Glebov V Y, Forrest C, Knauer J P, et al. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA[J]. Review of Scientific Instruments, 2012, 83: 10D309. doi: 10.1063/1.4731001
    [55] Xi Xiaofeng, Zhang Guoqiang, Liu Fulong, et al. Direct calibration of neutron detectors for laser-driven nuclear reaction experiments with a gated neutron source[J]. Review of Scientific Instruments, 2023, 94: 013301. doi: 10.1063/5.0127101
    [56] 席晓峰, 郭冰, 符长波, 等. 高功率激光驱动核反应研究进展与展望[J]. 原子能科学技术, 2023, 57(5): 865-887 doi: 10.7538/yzk.2023.youxian.0041

    Xi Xiaofeng, Guo Bing, Fu Changbo, et al. Nuclear reactions driven by high-power laser: current status and prospects[J]. Atomic Energy Science and Technology, 2023, 57(5): 865-887 doi: 10.7538/yzk.2023.youxian.0041
    [57] Wang Wenzhao, Lv Chong, Zhang Xiaopeng, et al. First measurement of the 7Li(D, n) astrophysical S-factor in laser-induced full plasma[J]. Physics Letters B, 2023, 843: 138034. doi: 10.1016/j.physletb.2023.138034
    [58] Xi Xiaofeng, Lv Chong, Ma Wenjun, et al. Deuterium–deuterium fusion in nanowire plasma driven with a nanosecond high-energy laser[J]. Frontiers in Physics, 2023, 11: 1212293. doi: 10.3389/fphy.2023.1212293
    [59] Goriely S. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis[J]. Physics Letters B, 1998, 436(1/2): 10-18. doi: 10.1016/s0370-2693(98)00907-1
    [60] Lattimer J M, Prakash M. Neutron star structure and the equation of state[J]. The Astrophysical Journal, 2001, 550(1): 426-442. doi: 10.1086/319702
    [61] Lu Zhiwei, Guo Liang, Li Zhengzheng, et al. Manipulation of giant multipole resonances via vortex γ photons[J]. Physical Review Letters, 2023, 131: 202502. doi: 10.1103/PhysRevLett.131.202502
    [62] 张婉玉, 卢知为, 吕冲, 等. 涡旋γ光与微观核靶相互作用截面的理论研究[J]. 原子能科学技术, 2025, 59(12): 2593-2601

    Zhang Wanyu, Lu Zhiwei, Lyu Chong, et al. Theoretical study for cross sections of interaction between vortex γ photons and mesoscopic nucleus target[J]. Atomic Energy Science and Technology, 2025, 59(12): 2593-2601
    [63] Tian Baoxian, Sun Wei, Gao Zhixing, et al. Multiple shock and acceleration processes of high-velocity flyers driven by the HEAVEN-I laser facility[J]. Physics of Plasmas, 2025, 31: 112701. doi: 10.1063/5.0221681
    [64] 班晓娜, 杨为明, 张品亮, 等. 激光驱动靶丸超高速发射研究[J]. 原子能科学技术, 2021, 55(12): 2389-2395

    Ban Xiaona, Yang Weiming, Zhang Pinliang, et al. Ultra-high speed launch of laser driven pellet[J]. Atomic Energy Science and Technology, 2021, 55(12): 2389-2395
    [65] He Hongyu, Gao Zhixing, Tian Heng, et al. Continuous emission monitoring the trace Sr from simulant aerosol emission with LIPS[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2024, 220: 107015. doi: 10.1016/j.sab.2024.107015
    [66] Wang Yuanhang, Tian Yuwei, Liu Cong, et al. High-sensitive detection of Li and Zn in aqueous solutions using capillary effect-enhanced laser-induced breakdown spectroscopy[J]. Talanta, 2025, 288: 127707. doi: 10.1016/j.talanta.2025.127707
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-14
  • 修回日期:  2025-01-09
  • 录用日期:  2025-12-23
  • 网络出版日期:  2026-02-07

目录

    /

    返回文章
    返回