留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性Breit-Wheeler散射中极化正电子操控机理研究

寇玉涵 马木提江·阿巴拜克热 黄雅清 王宇 栗建兴

寇玉涵, 马木提江·阿巴拜克热, 黄雅清, 等. 非线性Breit-Wheeler散射中极化正电子操控机理研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250410
引用本文: 寇玉涵, 马木提江·阿巴拜克热, 黄雅清, 等. 非线性Breit-Wheeler散射中极化正电子操控机理研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250410
Kou Yuhan, Ababekri Mamutjan, Huang Yaqing, et al. Study on manipulation mechanism of polarized positrons in nonlinear Breit-Wheeler scattering process[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250410
Citation: Kou Yuhan, Ababekri Mamutjan, Huang Yaqing, et al. Study on manipulation mechanism of polarized positrons in nonlinear Breit-Wheeler scattering process[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250410

非线性Breit-Wheeler散射中极化正电子操控机理研究

doi: 10.11884/HPLPB202638.250410
基金项目: 国家自然科学基金项目(12425510、12505276、U2267204、12441506);国家重点研发项目(2024YFA1610900)
详细信息
    作者简介:

    寇玉涵,17798050715@163.com

    通讯作者:

    栗建兴,jianxing@xjtu.edu.cn

  • 中图分类号: TN241

Study on manipulation mechanism of polarized positrons in nonlinear Breit-Wheeler scattering process

  • 摘要: 极化正电子束是前沿科学研究所需的重要探针。利用强激光场中非线性Breit-Wheeler散射产生极化正电子是近年来备受关注的新方案。探究该过程中激光与伽马光子参数对正电子最终极化状态的调控机理。在强场量子电动力学理论框架下,完整保留了所有粒子的自旋极化自由度,并精确纳入了平面波激光场的有限脉冲包络结构。计算表明:当激光与高能伽马光子皆为线偏振时,产生的正电子极化度为零;当驱动激光和伽马光子有一个为圆偏振时,正电子极化由圆偏振光主导,并随激光强度增强或伽马光子能量增加而下降,线偏振光的影响很小;当激光与伽马光子均为圆偏振时,高能正电子的极化由伽马光子主导,而低能正电子的极化则由二者共同决定,且激光强度的调控作用尤为显著。揭示了激光强度和伽马光子能量等关键因素对极化正电子产生的影响机理,为未来利用强激光与高能伽马光对撞产生高品质极化正电子束的实验方案提供了关键理论依据。
  • 图  1  在线偏振激光脉冲(对应不同强度)中,通过非线性Breit-Wheeler过程产生的电子能谱

    Figure  1.  $ Energy spectrum of generated electrons via NBW process in LP laser pulses of different intensities

    图  2  线偏振激光与线偏振伽马光子散射产生的正电子的极化度随正电子-伽马光子能量比的变化关系$

    Figure  2.  Polarization degree of positrons generated from the scattering of LP laser and LP γ-photon, versus the ratio of positron energy to γ-photon energy

    图  3  线偏振激光与线偏振伽马光子散射产生的正电子的角度分布

    Figure  3.  The angular distribution ($ {\theta }_{x} $ and $ {\theta }_{y} $) of positron yield for LP laser and LP γ-photon

    图  4  正电子在不同激光强度下极化度随正电子-伽马光子能量比的变化关系

    Figure  4.  Polarization degree of positrons under different laser intensities, versus the ratio of positron energy to γ-photon energy

    图  5  正电子在不同伽马光子能量下极化度随正电子-伽马光子能量比的变化关系

    Figure  5.  Polarization degree of positrons under different γ-photon energies, versus the ratio of positron energy to γ-photon energy

    图  6  圆偏振激光与线偏振伽马光子产生的正电子的角度分布

    Figure  6.  The angular distribution ($ {\theta }_{x} $ and $ {\theta }_{y} $) of positron yield for CP laser and LP γ-photon

    图  7  线偏振激光、圆偏振激光及圆偏振伽马光子散射产生的正电子的极化度随正电子-伽马光子能量比的变化关系

    Figure  7.  Polarization degree of positrons generated from the scattering of LP laser, CP laser, and CP γ-photon, versus the ratio of positron energy to γ-photon energy

    图  8  线偏振伽马光子、圆偏振伽马光子及圆偏振激光散射产生的正电子的极化度随正电子-伽马光子能量比的变化关系

    Figure  8.  Polarization degree of positrons generated from the scattering of LP γ-photon, CP γ-photon, and CP laser, versus the ratio of positron energy to γ-photon energy

    图  9  圆偏振伽马光子与圆偏振激光散射产生的正电子的极化度随正电子-伽马光子能量比的变化关系

    Figure  9.  Polarization degree of positrons generated form the scattering of CP laser and CP γ-photon, versus the ratio of positron energy to γ-photon energy

    图  10  圆偏振伽马光子与圆偏振激光散射产生的正电子的极化度随正电子-伽马光子能量比的变化关系

    Figure  10.  Polarization degree of positrons generated form the scattering of CP laser and CP γ-photon, versus the ratio of positron energy to γ-photon energy

    图  11  圆偏振伽马光子与圆偏振激光散射产生的正电子的极化度随正电子-伽马光子能量比的变化关系。

    Figure  11.  Polarization degree of positrons generated form the scattering of CP laser and CP γ-photon, versus the ratio of positron energy to γ-photon energy

  • [1] Zitzewitz P W, Van House J C, Rich A, et al. Spin polarization of low-energy positron beams[J]. Physical Review Letters, 1979, 43(18): 1281-1284. doi: 10.1103/PhysRevLett.43.1281
    [2] Gidley D W, Köymen A R, Capehart T W. Polarized low-energy positrons: a new probe of surface magnetism[J]. Physical Review Letters, 1982, 49(24): 1779-1783. doi: 10.1103/PhysRevLett.49.1779
    [3] Rich A, Van House J, Gidley D W, et al. Spin-polarized low-energy positron beams and their applications[J]. Applied Physics A, 1987, 43(4): 275-281. doi: 10.1007/BF00635183
    [4] Novak O P, Kholodov R I. Spin-polarization effects in the processes of synchrotron radiation and electron-positron pair production by a photon in a magnetic field[J]. Physical Review D, 2009, 80: 025025. doi: 10.1103/PhysRevD.80.025025
    [5] Ruffini R, Vereshchagin G, Xue Shesheng. Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes[J]. Physics Reports, 2010, 487(1/4): 1-140. doi: 10.1016/j.physrep.2009.10.004
    [6] Moortgat-Pick G, Abe T, Alexander G, et al. Polarized positrons and electrons at the linear collider[J]. Physics Reports, 2008, 460(4/5): 131-243.
    [7] Dietrich F, Moortgat-Pick G, Riemann S, et al. Status of the undulator-based ILC positron source[DB/OL]. arXiv preprint arXiv: 1902.07744, 2019.
    [8] Mane S R, Shatunov Y M, Yokoya K. Spin-polarized charged particle beams in high-energy accelerators[J]. Reports on Progress in Physics, 2005, 68(9): 1997-2265. doi: 10.1088/0034-4885/68/9/R01
    [9] Dumas J, Grames J, Voutier E. Polarized positrons at Jefferson Lab[J]. AIP Conference Proceedings, 2009, 1149(1): 1184-1188.
    [10] Abbott D, Adderley P, Adeyemi A, et al. Production of highly polarized positrons using polarized electrons at MeV energies[J]. Physical Review Letters, 2016, 116: 214801. doi: 10.1103/PhysRevLett.116.214801
    [11] Sun Ting, Zhao Qian, Xue Kun, et al. Production of polarized particle beams via ultraintense laser pulses[J]. Reviews of Modern Plasma Physics, 2022, 6: 38. doi: 10.1007/s41614-022-00099-9
    [12] Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
    [13] Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
    [14] Song Huaihang, Wang Weimin, Li Yutong. Dense polarized positrons from laser-irradiated foil targets in the QED regime[J]. Physical Review Letters, 2022, 129: 035001. doi: 10.1103/PhysRevLett.129.035001
    [15] Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [16] Fedotov A, Ilderton A, Karbstein F, et al. Advances in QED with intense background fields[J]. Physics Reports, 2023, 1010: 1-138.
    [17] Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 2020, 800: 135120. doi: 10.1016/j.physletb.2019.135120
    [18] Titov A I, Takabe H, Kämpfer B, et al. Enhanced subthreshold e+ e production in short laser pulses[J]. Physical Review Letters, 2012, 108: 240406. doi: 10.1103/PhysRevLett.108.240406
    [19] Dai Yanan, Shen Baifei, Li Jianxing, et al. Photon polarization effects in polarized electron-positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 2022, 7: 014401. doi: 10.1063/5.0063633
    [20] Seipt D, King B. Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear Compton and Breit-Wheeler processes[J]. Physical Review A, 2020, 102: 052805. doi: 10.1103/PhysRevA.102.052805
    [21] Ivanov D Y, Kotkin G L, Serbo V G. Complete description of polarization effects in e+ e pair production by a photon in the field of a strong laser wave[J]. The European Physical Journal C - Particles and Fields, 2005, 40(1): 27-40. doi: 10.1140/epjc/s2005-02125-1
    [22] Wistisen T N. Numerical approach to the semiclassical method of pair production for arbitrary spins and photon polarization[J]. Physical Review D, 2020, 101: 076017. doi: 10.1103/PhysRevD.101.076017
    [23] Tang Suo. Fully polarized nonlinear Breit-Wheeler pair production in pulsed plane waves[J]. Physical Review D, 2022, 105: 056018. doi: 10.1103/PhysRevD.105.056018
    [24] Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [25] Blackburn T G, King B. Higher fidelity simulations of nonlinear Breit–Wheeler pair creation in intense laser pulses[J]. The European Physical Journal C, 2022, 82: 44. doi: 10.1140/epjc/s10052-021-09955-3
    [26] Mackenroth K F. Quantum radiation in ultra-intense laser pulses[M]. Cham: Springer, 2014.
    [27] Heinzl T, Ilderton A, Marklund M. Finite size effects in stimulated laser pair production[J]. Physics Letters B, 2010, 692(4): 250-256. doi: 10.1016/j.physletb.2010.07.044
    [28] Jiang Jingjing, Dai Yanan, Zhuang Kaihong, et al. Interferences effects in the polarized nonlinear Breit-Wheeler process[J]. Physical Review D, 2024, 109: 036030. doi: 10.1103/PhysRevD.109.036030
  • 加载中
图(11)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-18
  • 修回日期:  2025-12-20
  • 录用日期:  2026-01-06
  • 网络出版日期:  2026-01-30

目录

    /

    返回文章
    返回