W-band Waveguide Filters Using Hybrid Higher-Order Modes for Quasi-Elliptic Response
-
摘要: W波段是重要的窗口频段,在高容量通信、高分辨率成像和高精度探测等毫米波领域具有重要前沿应用价值。针对新一代W波段固态高集成收发机系统的应用需求,提出一款低损耗、低阶数、易加工的波导型准椭圆带通滤波器。该滤波器基于2个混合高阶谐振腔,结合偏移磁耦合方法,实现带两个传输零点的4阶准椭圆响应,带外抑制性能良好。主要内容包括:W波段混合高阶模滤波器的结构拓扑设计;混合谐振模式(TE201/TE102和TE301/TE102)与传输零点产生机理与独立性分析;错位偏移磁耦合结构特征;滤波器整体性能优化及其H面分裂式CNC加工等。实测结果表明,该滤波器的有效通带为91.5 GHz至98 GHz,3 dB相对带宽为7%,带内插入损耗低至0.4 dB,回波损耗优于15 dB。除高频边带有少量偏移外,实测结果与仿真结果高度一致,验证了该器件的易加工、易集成与易频率拓展等特点。Abstract:
Background The W-band constitutes a critical atmospheric window in the millimeter-wave spectrum, with significant importance for advanced applications such as high-capacity communications, high-resolution imaging, and high-precision sensing. As essential components within core millimeter-wave transmitter and receiver systems, filters fundamentally determine transceiver performance. However, conventional designs frequently face challenges in simultaneously achieving high electrical performance and favorable manufacturability, representing a key obstacle in contemporary W-band filter development.Purpose This work aims to develop a low-loss, low-order, and readily fabricable waveguide quasi-elliptic bandpass filter for the W-band. The goal is to maximize structural simplicity while maintaining high performance, thereby addressing the requirements of next-generation highly-integrated transceiver systems.Methods The proposed filter employs a novel H-plane offset magnetic coupling configuration, which simplifies the input–output coupling mechanism. Guided by quasi-elliptic filtering theory, transmission zeros are generated on both sides of the passband through the excitation of TE201/TE102 and TE301/TE102 hybrid modes in two respective resonant cavities, resulting in enhanced out-of-band suppression. The filter is implemented in a split-block architecture and fabricated via high-precision computer numerical control (CNC) milling.Results Measured results demonstrate an operational passband from 91.5 GHz to 98 GHz, corresponding to a 3 dB fractional bandwidth of 7%, with an in-band insertion loss as low as 0.4 dB and a return loss greater than 15 dB. Except for a slight deviation observed at the upper band edge, the experimental data show strong agreement with simulation, confirming the design’s manufacturability, integration compatibility, and high-frequency performance.Conclusions A compact, low-loss W-band quasi-elliptic filter has been successfully realized using only two hybrid-mode cavities. The presented design exhibits notable advantages in terms of fabrication ease, integration suitability, and electrical performance, providing a viable solution for advanced millimeter-wave system applications. -
表 1 滤波器性能对比
Table 1. Comparison of filter performance
f0/GHz number of
cavitiesno. of TZs mode insertion
loss/dBfractional
bandwidth/%BW3 dB/BW40 dB Ref. [6] 97.5 5 0 TE10 0.76 5.62 − Ref. [6] 105.4 5 0 TE10 0.88 4.99 − Ref. [9] 100.0 4 0 TM120/TE101 0.50 6.90 − Ref. [20] 300.0 5 3 TE103/TE201 1.50 2.00 0.66 Ref. [21] 295.0 4 2 TM110/TE101 0.75 5.50 0.74 this work 95.0 2 2 TE102/TE201,TE301/TE102 0.40 7.00 0.56 -
[1] Wang Chengxiang, You Xiaohu, Gao Xiqi, et al. On the road to 6G: visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905-974. doi: 10.1109/COMST.2023.3249835 [2] Thomas B, Piironen P, Cuadrado-Calle D, et al. Millimeter- and submillimeter-wave technologies for space passive remote sensing instruments[J]. IEEE Journal of Microwaves, 2025, 5(6): 1212-1234. doi: 10.1109/JMW.2025.3605998 [3] 王战亮, 周帅岑, 路志刚, 等. W波段双通道微带行波管仿真设计[J]. 强激光与粒子束, 2025, 37: 083003Wang Zhanliang, Zhou Shuaicen, Lu Zhigang, et al. Design of W-band microstrip dual-channel traveling wave tubes[J]. High Power Laser and Particle Beams, 2025, 37: 083003 [4] 丁江乔, 梁启尧, 蒋均, 等. 基于肖特基二极管的310 GHz紧凑型接收机前端[J]. 强激光与粒子束, 2024, 36: 083002 doi: 10.11884/HPLPB202436.240119Ding Jiangqiao, Liang Qiyao, Jiang Jun, et al. 310 GHz compact receiver front-end based on Schottky diode[J]. High Power Laser and Particle Beams, 2024, 36: 083002 doi: 10.11884/HPLPB202436.240119 [5] Cuadrado-Calle D, Piironen P, Ayllon N. Solid-state diode technology for millimeter and submillimeter-wave remote sensing applications: current status and future trends[J]. IEEE Microwave Magazine, 2022, 23(6): 44-56. doi: 10.1109/MMM.2022.3155031 [6] Bartlett C, Bornemann J, Höft M. 3-D-printing and high-precision milling of W-band filter components with admittance inverter sequences[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(12): 2140-2147. doi: 10.1109/TCPMT.2021.3116220 [7] 许广阳, 赵芸, 陈垚, 等. W 波段单 E 面耦合宽带波导滤波器[J]. 微波学报, 2021, 37(3): 60-63,67 doi: 10.14183/j.cnki.1005-6122.202103013Xu Guangyang, Zhao Yun, Chen Yao, et al. W-band broadband waveguide filter based on single-sided E-plane coupling[J]. Journal of Microwaves, 2021, 37(3): 60-63,67 doi: 10.14183/j.cnki.1005-6122.202103013 [8] Ma Hanchi, Qiu Jinghui, Zhang Nan. Design of a W-band high stop-band suppression rectangular waveguide filter[C]//Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2023: 1-3. [9] Shang Xiaobang, Lancaster M, Dong Yuliang. W-band waveguide filter based on large TM120 resonators to ease CNC milling[J]. Electronics Letters, 2017, 53(7): 488-490. doi: 10.1049/el.2016.4131 [10] Bartlett C, Höft M. W-band TE102-mode filter with doubly loaded E-plane and H-plane irises[J]. Electronics Letters, 2021, 57(4): 190-192. [11] Chen Jianfei, Zhang Sheng, Zhang Chao, et al. W-band dual-band waveguide band-pass filter using dual-mode cavities[J]. Electronics Letters, 2018, 54(25): 1444-1446. [12] Bartlett C, Bornemann J, Höft M. Improved TM dual-mode filters with reduced fabrication complexity[J]. IEEE Journal of Microwaves, 2023, 3(1): 60-69. doi: 10.1109/JMW.2022.3211428 [13] Li Sheng, Yan Yutao, Yang Shicheng, et al. 220 GHz dual-mode dual-band waveguide filter in stackable multilayer MEMS technology[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2023, 44(9): 659-672. doi: 10.1007/s10762-023-00936-z [14] Duan Junping, Shen Xinxin, Xiao Hong, et al. Micromachined W-band dual-band quasi-elliptic waveguide filter[J]. Microelectronics Journal, 2021, 115: 105200. doi: 10.1016/j.mejo.2021.105200 [15] Xu Hao, Liu Haiwen, Huang Taotao, et al. 3-D-printed dual-band circularly polarized filtering antenna with self-diplexing property for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(4): 3807-3812. doi: 10.1109/TAP.2024.3370300 [16] Amari S, Rosenberg U, Bornemann J. Singlets, cascaded singlets, and the nonresonating node model for advanced modular design of elliptic filters[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(5): 237-239. doi: 10.1109/LMWC.2004.827866 [17] 李田睿, 张波, 樊勇. 110 GHz带通太赫兹滤波器设计[J]. 太赫兹科学与电子信息学报, 2020, 18(1): 14-17,23 doi: 10.11805/TKYDA2018355Li Tianrui, Zhang Bo, Fan Yong. Design of 110 GHz band-pass terahertz filter[J]. Journal of Terahertz Science and Electronic Information, 2020, 18(1): 14-17,23 doi: 10.11805/TKYDA2018355 [18] Ding Jiangqiao, Yuan Yi, Liang Qiyao, et al. Sub-THz fully inline dual-band filter based on high-order mode resonators[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2025, 46: 87. doi: 10.1007/s10762-025-01104-1 [19] Xu Jing, Ding Jiangqiao, Zhao Yun, et al. W-band broadband waveguide filter based on H-plane offset coupling[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40(4): 412-418. doi: 10.1007/s10762-019-00571-7 [20] Zhao Xinghai, Glubokov O, Oberhammer J. A silicon-micromachined waveguide platform with axial ports for integrated sub-THz filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(2): 1221-1232. doi: 10.1109/TMTT.2021.3136297 [21] Chen Yao, Feng Yinian. A WR-2.8 band pseudoelliptic waveguide filter using TM110 and TE101 dual-mode cavities[J]. Materials & Design, 2025, 250: 113601. doi: 10.1016/j.matdes.2025.113601 -
下载: