留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全固态反谐振光纤折射率调控特性及耦合传输的数值模拟研究

李鹏鹏 折胜飞 张岩 高崧 赵童 彭晗 贺淼 朱治昱 侯超奇 郭海涛

李鹏鹏, 折胜飞, 张岩, 等. 全固态反谐振光纤折射率调控特性及耦合传输的数值模拟研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250420
引用本文: 李鹏鹏, 折胜飞, 张岩, 等. 全固态反谐振光纤折射率调控特性及耦合传输的数值模拟研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250420
Li Pengpeng, She Shengfei, Zhang Yan, et al. Numerical simulation study on refractive index regulation characteristics and coupling transmission of all-solid anti-resonant fiber[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250420
Citation: Li Pengpeng, She Shengfei, Zhang Yan, et al. Numerical simulation study on refractive index regulation characteristics and coupling transmission of all-solid anti-resonant fiber[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250420

全固态反谐振光纤折射率调控特性及耦合传输的数值模拟研究

doi: 10.11884/HPLPB202638.250420
基金项目: 国家自然科学基金项目(U2530204,U2241237,62105358)
详细信息
    作者简介:

    李鹏鹏,lipengpeng23@mails.ucas.ac.cn

  • 中图分类号: TN929.11

Numerical simulation study on refractive index regulation characteristics and coupling transmission of all-solid anti-resonant fiber

  • 摘要: 1 μm 波段高功率掺镱光纤激光器在激光加工、生物医疗及国防安全等领域应用广泛,然而,随着输出功率持续提升,传统大纤芯光纤易受模式不稳定与受激拉曼散射等非线性效应影响。全固态反谐振石英光纤(AS-ARF)基于其独特的反谐振导光机理,可在实现超大模场传输的同时抑制高阶模,为兼顾高功率与高光束质量提供了创新技术路径。然而,面向高功率增益应用的有源掺镱(Yb)AS-ARF,其纤芯折射率起伏对模式特性的影响机制及“阶跃光纤-AS-ARF”熔接传输特性尚未得到系统研究,制约了实用化进程。针对上述问题,通过构建六环结构AS-ARF模型,结合理论推导与数值仿真模拟,研究了折射率起伏对光纤导光特性的影响,明确了维持原有导光机制的折射率变化临界值,验证了该光纤在目标波长下的低损耗、大模场面积及良好的光束质量保持能力;同时探究了阶跃光纤与AS-ARF熔接耦合场景的光传输规律,仿真结果表明当入射光束直径与AS-ARF纤芯直径匹配时,传输能量衰减<2%。本研究实现了对有源AS-ARF核心调控参数的量化,为Yb3+-AS-ARF的制备工艺优化(重点关注折射率均匀性控制)及实际耦合方案的设计提供了理论基础。
  • 图  1  全固态平行板波导结构

    Figure  1.  All-solid parallel plate waveguide structure

    图  2  Comsol仿真理论模型示意图

    Figure  2.  Schematic diagram of COMSOL simulation theoretical model

    图  3  “阶跃光纤-AS-ARF”熔接耦合模型示意图

    Figure  3.  Schematic diagram of fusion coupling model of “step fiber-AS-ARF”

    图  4  基模限制损耗曲线以及在谐振波长和反谐振波长下的基模模式分布

    Figure  4.  FM CL curve and distribution of FM modes at resonant and anti resonant wavelengths

    图  5  折射率起伏Δn在-1×104~2×104范围内的基模限制损耗曲线(FM CL)、高阶模抑制比(HOMLR)曲线及典型Δn值下的模式仿真

    Figure  5.  Fundamental Mode Confinement Loss (FM CL) curves, Higher-Order Mode Suppression Ratio (HOMLR) curves in the range of refractive index fluctuation Δn from -1×104 to 2×104 and mode simulation results under typical Δn values

    图  6  入射光直径为20 μm时AS-ARF的xoz截面能量分布及纤芯能量沿z轴强度曲线的传播仿真

    Figure  6.  Simulated propagation of the xoz cross-sectional energy distribution and the core energy intensity curve along the z-axis of AS-ARF at an incident light diameter of 20 μm

    图  7  不同入射光直径(DL)下AS-ARF纤芯能量沿 z 轴强度曲线、xOz 截面能量分布、xOy 截面纤芯能量分布及入射光直径 140 μm 时的传播特性仿真

    Figure  7.  Simulations of the core energy intensity curves along the z-axis, xOz cross-sectional energy distribution, xoy cross-sectional core energy distribution of AS-ARF under different incident light diameters (DL), and the propagation characteristics at an incident DL of 140 μm

    表  1  理论模型仿真参数

    Table  1.   Theoretical model simulation parameters

    Parameter Value/μm
    D 290
    dco 100
    dac 50
    dcl 68
    t 1.2
    n1 1.467
    n0 1.4502
    下载: 导出CSV
  • [1] Nilsson J, Payne D N. High-power fiber lasers[J]. Science, 2011, 332(6032): 921-922. doi: 10.1126/science.1194863
    [2] Jackson S D, Sabella A, Lancaster D G. Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 567-572. doi: 10.1109/JSTQE.2007.896087
    [3] 杨春平, 李伟, 董海燕, 等. 高功率全光纤激光器特性[J]. 强激光与粒子束, 2012, 24(6): 1287-1289 doi: 10.3788/HPLPB20122406.1287

    Yang Chunping, Li Wei, Dong Haiyan, et al. Characteristics of high-power all-fiber laser[J]. High Power Laser and Particle Beams, 2012, 24(6): 1287-1289 doi: 10.3788/HPLPB20122406.1287
    [4] Wang Yuying, Gao Cong, Tang Xuan, et al. 30/900 Yb-doped aluminophosphosilicate fiber presenting 6.85-kW laser output pumped with commercial 976-nm laser diodes[J]. Journal of Lightwave Technology, 2018, 36(16): 3396-3402. doi: 10.1109/JLT.2018.2823504
    [5] 张万儒, 粟荣涛, 李灿, 等. 窄线宽光纤激光振荡器研究进展(特邀)[J]. 红外与激光工程, 2022, 51: 20210879 doi: 10.3788/IRLA20210879

    Zhang Wanru, Su Rongtao, Li Can, et al. Research progress of narrow linewidth fiber laser oscillator (Invited)[J]. Infrared and Laser Engineering, 2022, 51: 20210879 doi: 10.3788/IRLA20210879
    [6] 来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤激光技术[J]. 强激光与粒子束, 2020, 32: 121001

    Lai Wenchang, Ma Pengfei, Xiao Hu, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32: 121001
    [7] Hu Man, Ke Weiwei, Yang Yifeng, et al. Low threshold Raman effect in high power narrowband fiber amplifier[J]. Chinese Optics Letters, 2016, 14: 011901. doi: 10.3788/COL201614.011901
    [8] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi: 10.1364/JOSAB.27.000B63
    [9] Zhang Chun, Tao Rumao, Li Min, et al. Theoretical analysis of the mode distortion induced by stimulated Raman scattering effect in large-mode area passive fibers[J]. Journal of Lightwave Technology, 2023, 41(2): 671-677. doi: 10.1109/JLT.2022.3215659
    [10] Habib S, Antonio-Lopez J E, Markos C, et al. Single-mode, low loss hollow-core anti-resonant fiber designs[J]. Optics Express, 2019, 27(4): 3824-3836. doi: 10.1364/OE.27.003824
    [11] Xing Zhen, Wang Xin, Lou Shuqin, et al. Large-mode-area all-solid anti-resonant fiber with single-mode operation for high-power fiber lasers[J]. Optics Letters, 2021, 46(8): 1908-1911. doi: 10.1364/OL.423241
    [12] He Lelu, Liang Yachen, Guan Yongnian, et al. Large mode-area all-solid anti-resonant fiber based on chalcogenide glass for mid-infrared transmission[J]. Optics Express, 2023, 31(5): 8975-8986. doi: 10.1364/OE.480504
    [13] Tian Hao, Fu Shijie, Xu Haichen, et al. Solid-core anti-resonant fiber based on silicate glass[J]. Optics & Laser Technology, 2024, 171: 110443. doi: 10.1016/j.optlastec.2023.110443
    [14] Cheng Yue, Yang Qiubai, Zhu Yiming, et al. Design and fabrication of all-solid anti-resonant silicate fibers for Yb ASE suppression in Er/Yb fiber amplifier[J]. Optics Express, 2024, 32(19): 33962-33973. doi: 10.1364/OE.527717
    [15] Li Mingjun, Hayashi T. Advances in low-loss, large-area, and multicore fibers - ScienceDirect[J]. Optical Fiber Telecommunications VII, 2020: 3-50.
    [16] Li Pengpeng, She Shengfei, Zhang Yan, et al. Design and fabrication of large-mode-area silica all-solid anti-resonant fiber[J]. Optics Express, 2025, 33(17): 36086-36099. doi: 10.1364/OE.567473
    [17] Duguay M A, Kokubun Y, Koch T L, et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures[J]. Applied Physics Letters, 1986, 49(1): 13-15. doi: 10.1063/1.97085
    [18] Marcatili E A J, Schmeltzer R A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers[J]. The Bell System Technical Journal, 1964, 43(4): 1783-1809. doi: 10.1002/j.1538-7305.1964.tb04108.x
    [19] Uebel P, Günendi M C, Frosz M H, et al. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes[J]. Optics Letters, 2016, 41(9): 1961-1964. doi: 10.1364/OL.41.001961
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-26
  • 修回日期:  2026-01-10
  • 录用日期:  2026-01-05
  • 网络出版日期:  2026-02-06

目录

    /

    返回文章
    返回