Numerical simulation study on refractive index regulation characteristics and coupling transmission of all-solid anti-resonant fiber
-
摘要: 1 μm 波段高功率掺镱光纤激光器在激光加工、生物医疗及国防安全等领域应用广泛,然而,随着输出功率持续提升,传统大纤芯光纤易受模式不稳定与受激拉曼散射等非线性效应影响。全固态反谐振石英光纤(AS-ARF)基于其独特的反谐振导光机理,可在实现超大模场传输的同时抑制高阶模,为兼顾高功率与高光束质量提供了创新技术路径。然而,面向高功率增益应用的有源掺镱(Yb)AS-ARF,其纤芯折射率起伏对模式特性的影响机制及“阶跃光纤-AS-ARF”熔接传输特性尚未得到系统研究,制约了实用化进程。针对上述问题,通过构建六环结构AS-ARF模型,结合理论推导与数值仿真模拟,研究了折射率起伏对光纤导光特性的影响,明确了维持原有导光机制的折射率变化临界值,验证了该光纤在目标波长下的低损耗、大模场面积及良好的光束质量保持能力;同时探究了阶跃光纤与AS-ARF熔接耦合场景的光传输规律,仿真结果表明当入射光束直径与AS-ARF纤芯直径匹配时,传输能量衰减<2%。本研究实现了对有源AS-ARF核心调控参数的量化,为Yb3+-AS-ARF的制备工艺优化(重点关注折射率均匀性控制)及实际耦合方案的设计提供了理论基础。Abstract:
Background High-power Yb-doped fiber lasers operating in the 1 μm band have been widely applied in fields such as laser processing, biomedicine, and national defense security. However, with the continuous increase in output power, traditional large-core fibers are susceptible to transverse mode instability (TMI) and stimulated Raman scattering (SRS), among other nonlinear effects. Based on their unique anti-resonant light-guiding mechanism, all-solid anti-resonant silica fibers (AS-ARFs) can realize ultra-large mode area (LMA) propagation while suppressing higher-order modes (HOMs), thus providing an innovative technical approach for balancing high power and high beam quality. Nevertheless, for active Yb-doped AS-ARFs targeting high-power gain applications, the influence mechanism of core refractive index fluctuations on mode characteristics and the fusion-splicing transmission characteristics of “step-index fiber - AS-ARF” structures have not been systematically investigated, which restricts their practical application process.Purpose To address the above problems, this study aims to clarify the critical value of refractive index variation for maintaining the original light-guiding mechanism of AS-ARFs, verify their capabilities of low loss, large mode area and beam quality maintenance, explore the fusion-splicing coupling transmission laws between SIFs and AS-ARFs, quantify the core control parameters of active AS-ARFs, and provide theoretical support for their fabrication process optimization and coupling scheme design.Methods A six-ring AS-ARF theoretical model was constructed, combined with theoretical derivation and numerical simulation: Comsol Multiphysics was used to analyze the mode characteristics and the influence of refractive index fluctuations, and the Rsoft-BeamPROP module (based on the beam propagation method) was adopted to simulate the light transmission laws in the fusion-splicing coupling scenario.Results The critical value of refractive index variation was clarified; the designed AS-ARFs were verified to have the characteristics of low loss, large mode area and excellent beam quality at the target wavelength; the fusion-splicing coupling transmission laws were revealed, and the transmitted energy attenuation was less than 2% when the incident beam diameter matched the core diameter of AS-ARFs.Conclusions This study realizes the quantification of core control parameters for active AS-ARFs, laying an important theoretical foundation for the fabrication process optimization of Yb3+-doped AS-ARFs (with a focus on refractive index uniformity control) and the design of practical coupling schemes. -
图 5 折射率起伏Δn在-1×10−4~2×10−4范围内的基模限制损耗曲线(FM CL)、高阶模抑制比(HOMLR)曲线及典型Δn值下的模式仿真
Figure 5. Fundamental Mode Confinement Loss (FM CL) curves, Higher-Order Mode Suppression Ratio (HOMLR) curves in the range of refractive index fluctuation Δn from -1×10−4 to 2×10−4 and mode simulation results under typical Δn values
图 7 不同入射光直径(DL)下AS-ARF纤芯能量沿 z 轴强度曲线、xOz 截面能量分布、xOy 截面纤芯能量分布及入射光直径 140 μm 时的传播特性仿真
Figure 7. Simulations of the core energy intensity curves along the z-axis, xOz cross-sectional energy distribution, xoy cross-sectional core energy distribution of AS-ARF under different incident light diameters (DL), and the propagation characteristics at an incident DL of 140 μm
表 1 理论模型仿真参数
Table 1. Theoretical model simulation parameters
Parameter Value/μm D 290 dco 100 dac 50 dcl 68 t 1.2 n1 1.467 n0 1.4502 -
[1] Nilsson J, Payne D N. High-power fiber lasers[J]. Science, 2011, 332(6032): 921-922. doi: 10.1126/science.1194863 [2] Jackson S D, Sabella A, Lancaster D G. Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 567-572. doi: 10.1109/JSTQE.2007.896087 [3] 杨春平, 李伟, 董海燕, 等. 高功率全光纤激光器特性[J]. 强激光与粒子束, 2012, 24(6): 1287-1289 doi: 10.3788/HPLPB20122406.1287Yang Chunping, Li Wei, Dong Haiyan, et al. Characteristics of high-power all-fiber laser[J]. High Power Laser and Particle Beams, 2012, 24(6): 1287-1289 doi: 10.3788/HPLPB20122406.1287 [4] Wang Yuying, Gao Cong, Tang Xuan, et al. 30/900 Yb-doped aluminophosphosilicate fiber presenting 6.85-kW laser output pumped with commercial 976-nm laser diodes[J]. Journal of Lightwave Technology, 2018, 36(16): 3396-3402. doi: 10.1109/JLT.2018.2823504 [5] 张万儒, 粟荣涛, 李灿, 等. 窄线宽光纤激光振荡器研究进展(特邀)[J]. 红外与激光工程, 2022, 51: 20210879 doi: 10.3788/IRLA20210879Zhang Wanru, Su Rongtao, Li Can, et al. Research progress of narrow linewidth fiber laser oscillator (Invited)[J]. Infrared and Laser Engineering, 2022, 51: 20210879 doi: 10.3788/IRLA20210879 [6] 来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤激光技术[J]. 强激光与粒子束, 2020, 32: 121001Lai Wenchang, Ma Pengfei, Xiao Hu, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32: 121001 [7] Hu Man, Ke Weiwei, Yang Yifeng, et al. Low threshold Raman effect in high power narrowband fiber amplifier[J]. Chinese Optics Letters, 2016, 14: 011901. doi: 10.3788/COL201614.011901 [8] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi: 10.1364/JOSAB.27.000B63 [9] Zhang Chun, Tao Rumao, Li Min, et al. Theoretical analysis of the mode distortion induced by stimulated Raman scattering effect in large-mode area passive fibers[J]. Journal of Lightwave Technology, 2023, 41(2): 671-677. doi: 10.1109/JLT.2022.3215659 [10] Habib S, Antonio-Lopez J E, Markos C, et al. Single-mode, low loss hollow-core anti-resonant fiber designs[J]. Optics Express, 2019, 27(4): 3824-3836. doi: 10.1364/OE.27.003824 [11] Xing Zhen, Wang Xin, Lou Shuqin, et al. Large-mode-area all-solid anti-resonant fiber with single-mode operation for high-power fiber lasers[J]. Optics Letters, 2021, 46(8): 1908-1911. doi: 10.1364/OL.423241 [12] He Lelu, Liang Yachen, Guan Yongnian, et al. Large mode-area all-solid anti-resonant fiber based on chalcogenide glass for mid-infrared transmission[J]. Optics Express, 2023, 31(5): 8975-8986. doi: 10.1364/OE.480504 [13] Tian Hao, Fu Shijie, Xu Haichen, et al. Solid-core anti-resonant fiber based on silicate glass[J]. Optics & Laser Technology, 2024, 171: 110443. doi: 10.1016/j.optlastec.2023.110443 [14] Cheng Yue, Yang Qiubai, Zhu Yiming, et al. Design and fabrication of all-solid anti-resonant silicate fibers for Yb ASE suppression in Er/Yb fiber amplifier[J]. Optics Express, 2024, 32(19): 33962-33973. doi: 10.1364/OE.527717 [15] Li Mingjun, Hayashi T. Advances in low-loss, large-area, and multicore fibers - ScienceDirect[J]. Optical Fiber Telecommunications VII, 2020: 3-50. [16] Li Pengpeng, She Shengfei, Zhang Yan, et al. Design and fabrication of large-mode-area silica all-solid anti-resonant fiber[J]. Optics Express, 2025, 33(17): 36086-36099. doi: 10.1364/OE.567473 [17] Duguay M A, Kokubun Y, Koch T L, et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures[J]. Applied Physics Letters, 1986, 49(1): 13-15. doi: 10.1063/1.97085 [18] Marcatili E A J, Schmeltzer R A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers[J]. The Bell System Technical Journal, 1964, 43(4): 1783-1809. doi: 10.1002/j.1538-7305.1964.tb04108.x [19] Uebel P, Günendi M C, Frosz M H, et al. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes[J]. Optics Letters, 2016, 41(9): 1961-1964. doi: 10.1364/OL.41.001961 -
下载: