Investigation of the performance of vertical extrinsic photoconductive switches based on nitrogen-doped diamond
-
摘要: 金刚石优异的材料特性,认为是用作光导开关器件的理想候选材料。然而,金刚石光导开关器件暴露出导通电阻大及器件耐压低的问题。为提升金刚石光导开关的器件性能,采用不同氮掺杂浓度及厚度的单晶金刚石材料,并通过氮化硅材料钝化处理,制作了垂直结构的金刚石光导开关器件。通过表征手段获取了金刚石的掺杂浓度梯度。以波长为532 nm的激光作为触发源,在不同的直流偏置下获得了光导开关器件的开关响应特性。实验结果表明:氮掺杂金刚石光导开关器件均展现出优异的开关比(~1011),及亚纳秒量级的上升沿及下降沿性能。其中,氮掺杂浓度高的金刚石材料,其对应的光导开关器件导通电阻小。通过降低金刚石材料厚度,在偏压为4 kV(电场强度为110 kV/cm)下实现了光导开关器件导通电阻为28.9 Ω,对应的输出峰值功率为128 kW,进一步提升了器件性能。通过氮掺杂浓度设计、衬底厚度减薄及氮化硅钝化处理等,本工作成功制备了具有较好性能的金刚石光导开关器件,为金刚石光导开关器件的性能提升提供指导。Abstract:
Background Diamond is considered a promising candidate for photoconductive semiconductor switches (PCSSs) due to its exceptional material properties.Purpose However, the development of high-performance diamond PCSSs is primarily impeded by their high on-state resistance and relatively low breakdown voltage. This study aims to improve the performance of the diamond PCSSs.Methods Passivated with Si3N4, vertical PCSSs were fabricated using nitrogen-doped single-crystal diamonds with different doping concentrations and thicknesses. The doping concentrations of diamond samples were analyzed. The photoresponse of the PCSSs was characterized under 532 nm laser excitation over a range of DC bias voltages.Results The experimental results showed that the nitrogen-doped diamond PCSSs present a large on/off ratio (~1011) along with sub-nanosecond rise and fall times. Among them, the diamond PCSS device with the highest nitrogen doping concentration exhibited the minimum on-state resistance. By reducing material thickness, a peak output power of 128 kW was achieved at a bias voltage of 4 kV (corresponding to the electric field strength of 110 kV/cm), with the PCSS exhibiting an on-state resistance of 28.9 Ω, further improving the device performance.Conclusions Through the design of nitrogen doping concentration, reduction of substrate thickness, and application of Si3N4 passivation, this work successfully developed diamond PCSSs with good performance, paving the way for the development of high-performance diamond PCSSs. -
表 1 氮掺杂金刚石光导开关的开关性能
Table 1. Switch performance of nitrogen-doped diamond PCSSs
No. Roff/TΩ Ron/Ω Roff/Ron switching time:on//ps switching time:on/ps Pout/kW 1# 9.3 321.6 2.9×1010 289 373 5.8 2# 9.1 52.9 1.7×1011 344 458 75.6 3# 11.1 28.9 3.8×1011 414 769 128.4 -
[1] Nunnally W C. High-power microwave generation using optically activated semiconductor switches[J]. IEEE Transactions on Electron Devices, 1990, 37(12): 2439-2448. doi: 10.1109/16.64516 [2] Cai Ping, Xu Jiankai, Zhou Miao, et al. High responsivity lateral GaN film photoconductive semiconductor switch based on sapphire substrates for high-power application[J]. Optics Letters, 2025, 50(5): 1715-1718. doi: 10.1364/OL.554159 [3] Ma Cheng, Wu Meilin, Wang Wennan, et al. Electrical characterizations of 35-kV semi-insulating gallium arsenide photoconductive switch[J]. Photonics, 2021, 8: 385. doi: 10.3390/photonics8090385 [4] Wu Qilin, Xun Tao, Zhao Yuxin, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842. doi: 10.1109/TED.2019.2901065 [5] Meyers V, Voss L, Flicker J D, et al. Photoconductive semiconductor switches: materials, physics, and applications[J]. Applied Sciences, 2025, 15: 645. doi: 10.3390/app15020645 [6] Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102. doi: 10.1016/j.opelre.2018.02.003 [7] Yang Yingxiang, Hu Long, Yang Xianghong, et al. Improved lifetime for kilovolts class avalanche GaAs PCSS by surface passivation of composite dielectric films[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2025, 32(3): 1755-1759. doi: 10.1109/TDEI.2024.3465456 [8] 李飞, 黄嘉, 刘京亮, 等. 体结构4H-SiC光电导开关光电转换效率研究[J]. 强激光与粒子束, 2025, 37: 093001 doi: 10.11884/HPLPB202537.250131Li Fei, Huang Jia, Liu Jingliang, et al. Research on the photoelectric conversion efficiency of vertical 4H-SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2025, 37: 093001 doi: 10.11884/HPLPB202537.250131 [9] 杨彪, 孙逊, 李阳凡, 等. 激光能量分布对GaN基光导开关导通特性的影响[J]. 强激光与粒子束, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321Yang Biao, Sun Xun, Li Yangfan, et al. Influence of laser spot energy distribution on the on-state performance of GaN-based photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321 [10] Zeng Linglong, Wang Langning, Niu Xinyue, et al. Characteristics comparison of SiC and GaN extrinsic vertical photoconductive switches[J]. IEEE Journal of the Electron Devices Society, 2024, 12: 249-255. doi: 10.1109/JEDS.2024.3372596 [11] 陈湘锦, 刘京亮, 段雪, 等. 超快响应GaN半导体光导开关的研制[J]. 半导体技术, 2022, 47(12): 960-964 doi: 10.13290/j.cnki.bdtjs.2022.12.004Chen Xiangjin, Liu Jingliang, Duan Xue, et al. Development of ultra-fast response GaN photoconductive semiconductor switch[J]. Semiconductor Technology, 2022, 47(12): 960-964 doi: 10.13290/j.cnki.bdtjs.2022.12.004 [12] Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective[J]. Journal of Physics D: Applied Physics, 2020, 53: 093001. doi: 10.1088/1361-6463/ab4eab [13] Han Zhuoran, Lee J, Mazumder A, et al. Record performance in intrinsic, impurity-free lateral diamond photoconductive semiconductor switches[J]. Applied Physics Letters, 2025, 126: 152105. doi: 10.1063/5.0266565 [14] Woo K, Malakoutian M, Reeves B A, et al. A study on sub-bandgap photoexcitation in nitrogen- and boron-doped diamond with interdigitated device structure[J]. Applied Physics Letters, 2022, 120: 112104. doi: 10.1063/5.0083710 [15] Collins A T, Connor A, Ly C H, et al. High-temperature annealing of optical centers in type-I diamond[J]. Journal of Applied Physics, 2005, 97: 083517. doi: 10.1063/1.1866501 [16] Li Qi, Wang Juan, Chen Genqiang, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diodes by selective growth nitrogen-doped diamond field plate[J]. Diamond and Related Materials, 2023, 134: 109799. doi: 10.1016/j.diamond.2023.109799 [17] Soto B, Couret M, Cañas J, et al. Non-volatile tuning of normally-on and off states of deep depletion ZrO2/O-terminated high voltage diamond MOSFET[J]. Diamond and Related Materials, 2023, 134: 109802. doi: 10.1016/j.diamond.2023.109802 [18] Hall D L, Voss L F, Grivickas P, et al. Photoconductive switch with high sub-bandgap responsivity in nitrogen-doped diamond[J]. IEEE Electron Device Letters, 2020, 41(7): 1070-1073. doi: 10.1109/led.2020.2999821 [19] Liu Liang, Liu Weiguo, Cao Na, et al. Study on the performance of PECVD silicon nitride thin films[J]. Defence Technology, 2013, 9(2): 121-126. doi: 10.1016/j.dt.2013.10.004 [20] Yang Mingyang, Yuan Qilong, Gao Jingyao, et al. A diamond temperature sensor based on the energy level shift of nitrogen-vacancy color centers[J]. Nanomaterials, 2019, 9: 1576. doi: 10.3390/nano9111576 [21] Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond[J]. Science, 2019, 363(6428): 728-731. doi: 10.1126/science.aav2789 [22] Jiao Jian, Xiao Longfei, Sun Xun, et al. Low on-resistance and ultrafast rise time based on vertical diamond photoconductive switch with NPN structure[J]. ACS Photonics, 2024, 11(10): 4177-4183. doi: 10.2139/ssrn.4828497 [23] 田立强. 高功率GaAs光电导开关的特性与击穿机理研究[D]. 西安: 西安理工大学, 2009Tian Liqiang. Study on the characteristics and breakdown mechanism of high power GaAs photoconductive semiconductor switches[D]. Xi’an: Xi’an University of Technology, 2009 [24] Buga S G, Kvashnin G M, Kuznetsov M S, et al. Hall measurements on nitrogen-doped Ib-type synthetic single crystal diamonds at temperatures 550–1143 K[J]. Applied Physics Letters, 2024, 124: 102107. doi: 10.1063/5.0180183 [25] 孙飞翔. GaAs光导开关的特性和损伤机理研究[D]. 合肥: 合肥工业大学, 2016Sun Feixiang. Characteristics and damage mechanism of GaAs PCSS[D]. Hefei: Hefei University of Technology, 2016 [26] Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561 [27] Han Zhuoran, Lee J, Messing S, et al. High current density diamond photoconductive semiconductor switches with a buried, metallic conductive channel[J]. IEEE Electron Device Letters, 2024, 45(6): 1044-1047. doi: 10.1109/LED.2024.3387325 -
下载: