留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
李鹏雨, 蔚翠, 何泽召, 等. 氮掺杂金刚石垂直非本征光导开关性能研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250424
引用本文: 李鹏雨, 蔚翠, 何泽召, 等. 氮掺杂金刚石垂直非本征光导开关性能研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250424
Li Pengyu, Yu Cui, He Zezhao, et al. Investigation of the performance of vertical extrinsic photoconductive switches based on nitrogen-doped diamond[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250424
Citation: Li Pengyu, Yu Cui, He Zezhao, et al. Investigation of the performance of vertical extrinsic photoconductive switches based on nitrogen-doped diamond[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250424

氮掺杂金刚石垂直非本征光导开关性能研究

doi: 10.11884/HPLPB202638.250424
详细信息
    作者简介:

    李鹏雨,2543717141@qq.com

    通讯作者:

    蔚 翠,yuc@cetc13.cn

    冯志红,fengzh@cetc13.cn

  • 中图分类号: TN36

Investigation of the performance of vertical extrinsic photoconductive switches based on nitrogen-doped diamond

  • 摘要: 金刚石优异的材料特性,认为是用作光导开关器件的理想候选材料。然而,金刚石光导开关器件暴露出导通电阻大及器件耐压低的问题。为提升金刚石光导开关的器件性能,采用不同氮掺杂浓度及厚度的单晶金刚石材料,并通过氮化硅材料钝化处理,制作了垂直结构的金刚石光导开关器件。通过表征手段获取了金刚石的掺杂浓度梯度。以波长为532 nm的激光作为触发源,在不同的直流偏置下获得了光导开关器件的开关响应特性。实验结果表明:氮掺杂金刚石光导开关器件均展现出优异的开关比(~1011),及亚纳秒量级的上升沿及下降沿性能。其中,氮掺杂浓度高的金刚石材料,其对应的光导开关器件导通电阻小。通过降低金刚石材料厚度,在偏压为4 kV(电场强度为110 kV/cm)下实现了光导开关器件导通电阻为28.9 Ω,对应的输出峰值功率为128 kW,进一步提升了器件性能。通过氮掺杂浓度设计、衬底厚度减薄及氮化硅钝化处理等,本工作成功制备了具有较好性能的金刚石光导开关器件,为金刚石光导开关器件的性能提升提供指导。
  • 图  1  金刚石光导开关结构示意图

    Figure  1.  Schematic diagram of diamond PCSS

    图  2  光导开关的测试电路图及激光脉冲波形

    Figure  2.  Test circuit for PCSSs and the pulse of laser

    图  3  金刚石样品的材料性质

    Figure  3.  Material properties of the diamond samples

    图  4  金刚石光导开关的暗态漏电流

    Figure  4.  Leakage current of the diamond PCSSs

    图  5  具有不同氮浓度及不同衬底厚度的金刚石光导开关器件性能

    Figure  5.  Performance of the diamond PCSSs with different nitrogen concentrations and different substrate thicknesses

    图  6  不同金刚石光导开关的性能比较

    Figure  6.  Performance comparison of different diamond PCSSs

    表  1  氮掺杂金刚石光导开关的开关性能

    Table  1.   Switch performance of nitrogen-doped diamond PCSSs

    No. Roff/TΩ Ron Roff/Ron switching time:on//ps switching time:on/ps Pout/kW
    1# 9.3 321.6 2.9×1010 289 373 5.8
    2# 9.1 52.9 1.7×1011 344 458 75.6
    3# 11.1 28.9 3.8×1011 414 769 128.4
    下载: 导出CSV
  • [1] Nunnally W C. High-power microwave generation using optically activated semiconductor switches[J]. IEEE Transactions on Electron Devices, 1990, 37(12): 2439-2448. doi: 10.1109/16.64516
    [2] Cai Ping, Xu Jiankai, Zhou Miao, et al. High responsivity lateral GaN film photoconductive semiconductor switch based on sapphire substrates for high-power application[J]. Optics Letters, 2025, 50(5): 1715-1718. doi: 10.1364/OL.554159
    [3] Ma Cheng, Wu Meilin, Wang Wennan, et al. Electrical characterizations of 35-kV semi-insulating gallium arsenide photoconductive switch[J]. Photonics, 2021, 8: 385. doi: 10.3390/photonics8090385
    [4] Wu Qilin, Xun Tao, Zhao Yuxin, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842. doi: 10.1109/TED.2019.2901065
    [5] Meyers V, Voss L, Flicker J D, et al. Photoconductive semiconductor switches: materials, physics, and applications[J]. Applied Sciences, 2025, 15: 645. doi: 10.3390/app15020645
    [6] Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102. doi: 10.1016/j.opelre.2018.02.003
    [7] Yang Yingxiang, Hu Long, Yang Xianghong, et al. Improved lifetime for kilovolts class avalanche GaAs PCSS by surface passivation of composite dielectric films[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2025, 32(3): 1755-1759. doi: 10.1109/TDEI.2024.3465456
    [8] 李飞, 黄嘉, 刘京亮, 等. 体结构4H-SiC光电导开关光电转换效率研究[J]. 强激光与粒子束, 2025, 37: 093001 doi: 10.11884/HPLPB202537.250131

    Li Fei, Huang Jia, Liu Jingliang, et al. Research on the photoelectric conversion efficiency of vertical 4H-SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2025, 37: 093001 doi: 10.11884/HPLPB202537.250131
    [9] 杨彪, 孙逊, 李阳凡, 等. 激光能量分布对GaN基光导开关导通特性的影响[J]. 强激光与粒子束, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321

    Yang Biao, Sun Xun, Li Yangfan, et al. Influence of laser spot energy distribution on the on-state performance of GaN-based photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321
    [10] Zeng Linglong, Wang Langning, Niu Xinyue, et al. Characteristics comparison of SiC and GaN extrinsic vertical photoconductive switches[J]. IEEE Journal of the Electron Devices Society, 2024, 12: 249-255. doi: 10.1109/JEDS.2024.3372596
    [11] 陈湘锦, 刘京亮, 段雪, 等. 超快响应GaN半导体光导开关的研制[J]. 半导体技术, 2022, 47(12): 960-964 doi: 10.13290/j.cnki.bdtjs.2022.12.004

    Chen Xiangjin, Liu Jingliang, Duan Xue, et al. Development of ultra-fast response GaN photoconductive semiconductor switch[J]. Semiconductor Technology, 2022, 47(12): 960-964 doi: 10.13290/j.cnki.bdtjs.2022.12.004
    [12] Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective[J]. Journal of Physics D: Applied Physics, 2020, 53: 093001. doi: 10.1088/1361-6463/ab4eab
    [13] Han Zhuoran, Lee J, Mazumder A, et al. Record performance in intrinsic, impurity-free lateral diamond photoconductive semiconductor switches[J]. Applied Physics Letters, 2025, 126: 152105. doi: 10.1063/5.0266565
    [14] Woo K, Malakoutian M, Reeves B A, et al. A study on sub-bandgap photoexcitation in nitrogen- and boron-doped diamond with interdigitated device structure[J]. Applied Physics Letters, 2022, 120: 112104. doi: 10.1063/5.0083710
    [15] Collins A T, Connor A, Ly C H, et al. High-temperature annealing of optical centers in type-I diamond[J]. Journal of Applied Physics, 2005, 97: 083517. doi: 10.1063/1.1866501
    [16] Li Qi, Wang Juan, Chen Genqiang, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diodes by selective growth nitrogen-doped diamond field plate[J]. Diamond and Related Materials, 2023, 134: 109799. doi: 10.1016/j.diamond.2023.109799
    [17] Soto B, Couret M, Cañas J, et al. Non-volatile tuning of normally-on and off states of deep depletion ZrO2/O-terminated high voltage diamond MOSFET[J]. Diamond and Related Materials, 2023, 134: 109802. doi: 10.1016/j.diamond.2023.109802
    [18] Hall D L, Voss L F, Grivickas P, et al. Photoconductive switch with high sub-bandgap responsivity in nitrogen-doped diamond[J]. IEEE Electron Device Letters, 2020, 41(7): 1070-1073. doi: 10.1109/led.2020.2999821
    [19] Liu Liang, Liu Weiguo, Cao Na, et al. Study on the performance of PECVD silicon nitride thin films[J]. Defence Technology, 2013, 9(2): 121-126. doi: 10.1016/j.dt.2013.10.004
    [20] Yang Mingyang, Yuan Qilong, Gao Jingyao, et al. A diamond temperature sensor based on the energy level shift of nitrogen-vacancy color centers[J]. Nanomaterials, 2019, 9: 1576. doi: 10.3390/nano9111576
    [21] Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond[J]. Science, 2019, 363(6428): 728-731. doi: 10.1126/science.aav2789
    [22] Jiao Jian, Xiao Longfei, Sun Xun, et al. Low on-resistance and ultrafast rise time based on vertical diamond photoconductive switch with NPN structure[J]. ACS Photonics, 2024, 11(10): 4177-4183. doi: 10.2139/ssrn.4828497
    [23] 田立强. 高功率GaAs光电导开关的特性与击穿机理研究[D]. 西安: 西安理工大学, 2009

    Tian Liqiang. Study on the characteristics and breakdown mechanism of high power GaAs photoconductive semiconductor switches[D]. Xi’an: Xi’an University of Technology, 2009
    [24] Buga S G, Kvashnin G M, Kuznetsov M S, et al. Hall measurements on nitrogen-doped Ib-type synthetic single crystal diamonds at temperatures 550–1143 K[J]. Applied Physics Letters, 2024, 124: 102107. doi: 10.1063/5.0180183
    [25] 孙飞翔. GaAs光导开关的特性和损伤机理研究[D]. 合肥: 合肥工业大学, 2016

    Sun Feixiang. Characteristics and damage mechanism of GaAs PCSS[D]. Hefei: Hefei University of Technology, 2016
    [26] Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
    [27] Han Zhuoran, Lee J, Messing S, et al. High current density diamond photoconductive semiconductor switches with a buried, metallic conductive channel[J]. IEEE Electron Device Letters, 2024, 45(6): 1044-1047. doi: 10.1109/LED.2024.3387325
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-24
  • 修回日期:  2026-01-21
  • 录用日期:  2026-01-14
  • 网络出版日期:  2026-02-07

目录

    /

    返回文章
    返回