Femtosecond laser coherent beam combining system delivering kilowatt-level average power based on all-fiber chirped pulse amplification
-
摘要: 高功率飞秒光纤激光在先进制造、激光粒子加速和高次谐波产生等领域具有广泛的应用,飞秒光纤激光相干合成技术是突破单根光纤功率极限、实现高功率飞秒激光输出的有效技术手段。搭建了一套基于全光纤结构啁啾脉冲放大的飞秒激光相干偏振合成系统,采用光纤拉伸器并结合随机并行梯度下降算法实现了三路激光放大器的相位调节与稳定相干合成。在总输出功率为
1219.1 W时,系统合成功率为1072 W,对应的合成效率为87%。合成光束具有近衍射极限光束质量(M2=1.23),压缩后脉冲宽度为899 fs。此外,还理论分析了光束质量退化对合成效率的影响。该全光纤结构飞秒激光相干合成系统具有优异的稳定性并兼具高功率输出,未来通过增加合成通道数量可以进一步提升输出功率,为高通量超快超强激光的前沿应用提供技术支撑。Abstract:Background High-power femtosecond fiber lasers have extensive applications in advanced manufacturing, laser particle acceleration, high-order harmonic generation and so on. Coherent beam combining (CBC) of femtosecond fiber lasers serves as an effective technical approach to overcome the power limitations of single fibers and achieve high-power femtosecond laser output.Purpose This work aims to develop a high-power femtosecond fiber laser CBC system to achieve kilowatt-level average power output with high stability.Methods The presented femtosecond fiber laser CBC system is based on a three-channel all-fiber chirped pulse amplifier. Phase adjustment and stable coherent combining of three laser amplifiers are achieved using fiber stretchers in combination with the stochastic parallel gradient descent (SPGD) algorithm.Results At a total output power of1219.1 W, the system delivers a combined power of1072 W, corresponding to a combining efficiency of 87%. The combined beam exhibits near-diffraction-limited beam quality (M2=1.23), and the compressed pulse width is 899 fs. Furthermore, the influence of beam quality degradation on the combining efficiency is theoretically analyzed. The results show that the combining efficiency would decrease as the beam quality degradation rate increased, and the combining efficiency is more sensitive to the degradation of multi-channel beam quality.Conclusions The demonstrated all-fiber coherent beam combining system exhibits excellent stability and high-power output. Further power scaling can be realized by increasing the number of combining channels, thereby providing crucial technical support for the advanced applications of high flux ultrafast and ultra-intense lasers. -
图 1 基于全光纤飞秒激光啁啾脉冲放大的相干合成系统实验装置图,其中CFBG为啁啾光纤布拉格光栅,pre-amp为预放大器,ODL为光学延迟线,main-amp为主放大器,CO为准直器,HWP为半波片,M为高反镜,PBS为偏振分束棱镜,BS为分束镜,TFP为薄膜偏振片,PD为光电探测器
Figure 1. Schematic setup of the coherent beam combining system based on all-fiber femtosecond laser chirped pulse amplification. CFBG: chirped fiber Bragg grating; pre-amp: pre-amplifier; ODL: optical delay line; main-amp: main amplifier; CO: collimator; HWP: half-wave plate; M: mirror; PBS: polarization beam splitter; BS: beam splitter; TFP: thin-film polarizer; PD: photodetector
-
[1] Malinauskas M, Žukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 2016, 5: e16133. [2] Pupeza I, Zhang Chuankun, Högner M, et al. Extreme-ultraviolet frequency combs for precision metrology and attosecond science[J]. Nature Photonics, 2021, 15(3): 175-186. doi: 10.1038/s41566-020-00741-3 [3] 魏子娟, 高熙泽, 孟翔宇, 等. 高重复频率、高功率高次谐波极紫外光源进展及应用[J]. 中国激光, 2024, 51: 0701001 doi: 10.3788/CJL231490Wei Zijuan, Gao Xize, Meng Xiangyu, et al. High harmonic extreme ultraviolet light source with high repetition rate and power[J]. Chinese Journal of Lasers, 2024, 51: 0701001 doi: 10.3788/CJL231490 [4] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261. doi: 10.1038/nphoton.2013.75 [5] Chang Guoqing, Wei Zhiyi. Ultrafast fiber lasers: an expanding versatile toolbox[J]. iScience, 2020, 23: 101101. doi: 10.1016/j.isci.2020.101101 [6] 刘一州, 乔文超, 高空, 等. 高功率超快光纤激光技术发展研究[J]. 中国激光, 2021, 48: 1201003 doi: 10.3788/CJL202148.1201003Liu Yizhou, Qiao Wenchao, Gao Kong, et al. Development of high-power ultrafast fiber laser technology[J]. Chinese Journal of Lasers, 2021, 48: 1201003 doi: 10.3788/CJL202148.1201003 [7] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96. [8] Gaida C, Gebhardt M, Heuermann T, et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 2018, 43(23): 5853-5856. doi: 10.1364/OL.43.005853 [9] Xiu Hao, Fan Yiheng, Wang Tianxi, et al. 2-kW all polarization-maintaining fiber ultrafast laser at a GHz repetition rate[J]. Chinese Optics Letters, 2025, 23: 031402. [10] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260. [11] Zhang Haitao, Zu Jiaqi, Deng Decai, et al. Yb-doped fiber chirped pulse amplification system delivering 1 mJ, 231 fs at 1 kHz repetition rate[J]. Photonics, 2022, 9: 67. doi: 10.3390/photonics9020067 [12] Su Meng, Meng Xianghao, Jiao Tianmeng, et al. 134 W, 1.34 mJ, 240 fs ultrashort pulses from a rod-type photonic crystal fiber amplifier[J]. Optics Letters, 2025, 50(14): 4538-4541. [13] 王涛, 杨宇, 倪晨曦, 等. 超快光纤激光啁啾脉冲放大技术研究进展与发展趋势(特邀)[J]. 中国激光, 2025, 52: 2301009Wang Tao, Yang Yu, Ni Chenxi, et al. Research progress and development trends in ultrafast fiber laser chirped pulse amplification technology (invited)[J]. Chinese Journal of Lasers, 2025, 52: 2301009 [14] 周朴, 常洪祥, 粟荣涛, 等. 光纤激光相干合成的研究历程与发展趋势: 基于文献引用的视角(特邀)[J]. 中国激光, 2024, 51: 0121002 doi: 10.3788/CJL231480Zhou Pu, Chang Hongxiang, Su Rongtao, et al. Research history and prospects of coherent beam combining of fiber lasers: from perspective of citationss (invited)[J]. Chinese Journal of Lasers, 2024, 51: 0121002 doi: 10.3788/CJL231480 [15] 李灿, 张嘉怡, 任博, 等. 超快超强激光与光纤激光相干合成技术的融合发展(特邀)[J]. 中国激光, 2024, 51: 1901006 doi: 10.3788/CJL240967Li Can, Zhang Jiayi, Ren Bo, et al. Integrated development of ultrafast ultra-intense laser technology with fiber laser coherent beam combination technology (invited)[J]. Chinese Journal of Lasers, 2024, 51: 1901006 doi: 10.3788/CJL240967 [16] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843 [17] Stark H, Benner M, Buldt J, et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 2023, 48(11): 3007-3010. doi: 10.1364/assl.2023.ath3a.5 [18] 王志浩, 彭双喜, 徐浩, 等. 724 W, 0.9 mJ, 227 fs四通道相干合成超快光纤激光系统(特邀)[J]. 光学学报, 2024, 44: 1732017 doi: 10.3788/AOS241138Wang Zhihao, Peng Shuangxi, Xu Hao, et al. 724 W, 0.9 mJ, 227 fs four-channel coherently combined ultrafast fiber laser system (invited)[J]. Acta Optica Sinica, 2024, 44: 1732017 doi: 10.3788/AOS241138 [19] 王志浩, 彭双喜, 徐浩, 等. 1.2 kW, 1.2 mJ相干合成飞秒光纤激光系统[J/OL]. 中国激光, (2025-07-15). https://link.cnki.net/urlid/31.1339.TN.20250714.1606.022Wang Zhihao, Peng Shuangxi, Xu Hao, et al. 1.2 kW, 1.2 mJ coherently combined femtosecond fiber laser system[J/OL]. Chinese Journal of Lasers, (2025-07-15). https://link.cnki.net/urlid/31.1339.TN.20250714.1606.022. [20] 史卓, 常洪祥, 王栋梁, 等. 基于掺镱棒状光纤的高功率大能量四路相干合成飞秒激光系统[J]. 物理学报, 2025, 74: 014205 doi: 10.7498/aps.74.20241476Shi Zhuo, Chang Hongxiang, Wang Dongliang, et al. High-power high-energy four-channel fiber coherent beam combined system[J]. Acta Physica Sinica, 2025, 74: 014205 doi: 10.7498/aps.74.20241476 [21] Shi Zhuo, Du Zhihang, Liang Chengbin, et al. Full stabilization of eight-channel Yb-fiber coherent beam combining system delivering 1.18-kW, 1.18-mJ, 270-fs pulses[J]. Chinese Physics B, 2025. [22] 毕根毓, 刘博文, 余晨鸣, 等. 基于相干合成的高功率绿光飞秒激光系统[J]. 中国激光, 2025, 52: 0201003 doi: 10.3788/CJL240899Bi Genyu, Liu Bowen, Yu Chenming, et al. Coherent beam combining-based high-power green femtosecond laser system[J]. Chinese Journal of Lasers, 2025, 52: 0201003 doi: 10.3788/CJL240899 [23] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031 [24] Ranély-Vergé-Dépré C A, Lechevalier C, Andrieu J, et al. Tailoring coherent beam combined laser pulse trains for high peak and average power applications[J]. High Power Laser Science and Engineering, 2024, 12: e93. doi: 10.1017/hpl.2024.77 [25] 王涛, 李灿, 刘洋, 等. 基于光纤拉伸器锁相实现两路超快激光相干偏振合成[J]. 红外与激光工程, 2023, 52: 20220869 doi: 10.3788/IRLA20220869Wang Tao, Li Can, Liu Yang, et al. Coherent polarization beam combination of two ultrafast laser channels based on fiber stretcher phase locking[J]. Infrared and Laser Engineering, 2023, 52: 20220869 doi: 10.3788/IRLA20220869 [26] Yoda H, Polynkin P, Mansuripur M. Beam quality factor of higher order modes in a step-index fiber[J]. Journal of Lightwave Technology, 2006, 24(3): 1350-1355. doi: 10.1109/JLT.2005.863337 [27] Malekmohamadi S, Pergament M, Kulcsar G, et al. 44-fs, 1-MHz, 70-µJ Yb-doped fiber laser system for high harmonic generation[J]. Optics Express, 2024, 32(22): 39460-39468. doi: 10.1364/OE.538748 [28] Nguyen D, Piracha M U, Delfyett P J. Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power[J]. Optics Letters, 2012, 37(23): 4913-4915. doi: 10.1364/OL.37.004913 [29] Stark H, Buldt J, Müller M, et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 2019, 44(22): 5529-5532. doi: 10.1364/OL.44.005529 [30] Yang Bowei, Liu Guanyu, Abulikemu A, et al. Coherent stacking of 128 pulses from a GHz repetition rate femtosecond Yb: fiber laser[C]//2020 Conference on Lasers and Electro-Optics (CLEO). 2020: 1-2. -
下载: