留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

300 kV级预电离环形阴极气体开关

王刚 贾彪 刘世飞

王刚, 贾彪, 刘世飞. 300 kV级预电离环形阴极气体开关[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250444
引用本文: 王刚, 贾彪, 刘世飞. 300 kV级预电离环形阴极气体开关[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250444
Wang Gang, Jia Biao, Liu Shifei. 300 kV pre-ionization annular-cathode gas switch[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250444
Citation: Wang Gang, Jia Biao, Liu Shifei. 300 kV pre-ionization annular-cathode gas switch[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250444

300 kV级预电离环形阴极气体开关

doi: 10.11884/HPLPB202638.250444
基金项目: 高功率微波重点实验室基金项目(Z09120813)
详细信息
    作者简介:

    王 刚,wanggang@nint.ac.cn

  • 中图分类号: TM832

300 kV pre-ionization annular-cathode gas switch

  • 摘要: 随着高功率脉冲技术向实际应用的快速发展,对高压气体开关自击穿稳定性提出更高要求。提出了一种辅助环形刀刃调控初始电子、环形半球导通主电流的预电离阴极开关思路。设计出一种300 kV级预电离环形阴极气体开关,当开关间距为35 mm时,预电离开关刀刃处场增强因子设计为6.2,与半球处场增强因子之比为3.2。开展了数十微秒脉冲作用下开关击穿特性实验研究,结果显示,当氮气压力为0.5 MPa、重复频率为1 Hz时,预电离气体开关平均击穿电压为322.5 kV,幅值抖动为0.44%;相比纯环形半球开关,预电离气体开关击穿电压下降17.6%,幅值抖动下降82%。实验研究表明该预电离气体开关在高电压低抖动方面优势明显。
  • 图  1  预电离环形阴极气体开关示意图

    Figure  1.  Pre-ionization annular-cathode gas switch

    图  2  预电离气体开关模型及电场仿真图

    Figure  2.  Model and electric field simulation diagram of pre-ionization gas switch

    图  3  气体开关电场强度仿真结果

    Figure  3.  Electric field strength of gas switch

    图  4  预电离气体开关实物图

    Figure  4.  Photo of pre-ionization gas switch

    图  5  开关击穿电压累积波形

    Figure  5.  Waveforms of breakdown voltage of gas switch

    图  6  开关击穿特性对比结果

    Figure  6.  Comparative results of breakdown characteristics

    图  7  开关击穿电压和幅值随气压变化曲线

    Figure  7.  Breakdown voltage and jitter versus gas pressure

    图  8  开关击穿电压和幅值随重频变化曲线

    Figure  8.  Breakdown voltage and jitter versus repetitive rage

    图  9  开关击穿电压随间距变化曲线

    Figure  9.  Breakdown voltage versus gap length

    图  10  开关击穿电压幅值抖动随间距变化曲线

    Figure  10.  Voltage jitter versus gap length

    图  11  气体开关烧蚀实验结果

    Figure  11.  Electrode erosion results of gas switch

    图  12  不同开关间距下电极烧蚀结果

    Figure  12.  Electrode erosion photos of gas switch versus gap length

  • [1] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [2] Bluhm H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008: 75-149.

    Bluhm H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008: 75-149. (Bluhm H. Pulsed power systems: principles and applications[M]. Jiang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008: 75-149
    [3] Martin J C. Nanosecond pulse techniques[J]. Proceedings of the IEEE, 1992, 80(6): 934-945. doi: 10.1109/5.149456
    [4] 王刚, 张喜波, 王俊杰, 等. 基于Tesla变压器和Blumlein线的低抖动重频脉冲发生器[J]. 强激光与粒子束, 2016, 28: 045005 doi: 10.11884/HPLPB201628.045005

    Wang Gang, Zhang Xibo, Wang Junjie, et al. Low-jitter repetitive pulsed generator based on Tesla transformer and Blumlein pulse forming line[J]. High Power Laser and Particle Beams, 2016, 28: 045005 doi: 10.11884/HPLPB201628.045005
    [5] Wang Gang, Liu Sheng, Zeng Bo, et al. 15-GW repetitive pulsed power generator based on Midel 7131 and double-width pulse forming line[J]. Review of Scientific Instruments, 2024, 95: 114702. doi: 10.1063/5.0202377
    [6] Korovin S D, Rostov V V. High-current nanosecond pulse-periodic electron accelerators utilizing a tesla transformer[J]. Russian Physics Journal, 1996, 39(12): 1177-1185. doi: 10.1007/BF02436160
    [7] 王天驰, 王海洋, 黄涛, 等. 自触发紫外预电离开关脉冲击穿时延抖动影响因素及改进方法[J]. 强激光与粒子束, 2022, 34: 075010

    Wang Tianchi, Wang Haiyang, Huang Tao, et al. Influence factors of the pulsed breakdown time delay jitter of a self-triggered UV-illuminated switch and an improvement method[J]. High Power Laser and Particle Beams, 2022, 34: 075010
    [8] Geng Jiuyuan, Yang Jianhua, Cheng Xinbing, et al. The development of high-voltage repetitive low-jitter corona stabilized triggered switch[J]. Review of Scientific Instruments, 2018, 89: 044705. doi: 10.1063/1.5011089
    [9] 王刚, 张喜波, 刘胜, 等. 一种百千伏多级电晕稳定开关[J]. 现代应用物理, 2019, 10: 030402 doi: 10.12061/j.issn.2095-6223.2019.030402

    Wang Gang, Zhang Xibo, Liu Sheng, et al. A 100 kV multi-stage corona-stabilized switch[J]. Modern Applied Physics, 2019, 10: 030402 doi: 10.12061/j.issn.2095-6223.2019.030402
    [10] Krastelev E G, Nashilevskiy A V, Ponomarev D V, et al. Corona-stabilized gas spark gap switch for a double forming line with 300 kV working voltage[J]. Journal of Physics: Conference Series, 2018, 1115: 022018. doi: 10.1088/1742-6596/1115/2/022018
    [11] Frey W, Sack M, Wuestner R, et al. Gas-insulated self-breakdown spark gaps: aspects on low-scattering and long-lifetime switching[J]. Acta Physica Polonica A, 2009, 115(6): 1016-1018. doi: 10.12693/APhysPolA.115.1016
    [12] 陈瀚. 自耦式预电离开关的研究[D]. 长沙: 国防科学技术大学, 2012

    Chen Han. Research on the self-coupling pre-ionization switch[D]. Changsha: National University of Defense Technology, 2012
    [13] Gao Pengcheng, Su Jiancang, Zeng Bo, et al. A low-jitter self-break repetitive multi-stage gas switch[J]. Review of Scientific Instruments, 2017, 88: 024705. doi: 10.1063/1.4973420
    [14] Su Jiancang, Zeng Bo, Gao Pengcheng, et al. A voltage-division-type low-jitter self-triggered repetition-rate switch[J]. Review of Scientific Instruments, 2016, 87: 105118. doi: 10.1063/1.4963659
    [15] Song Xiaoxin, Liu Guozhi, Peng Jianchang, et al. TPG400: A compact short pulse electron beam accelerator, EAPPC2006, Chengdu, 2006.
  • 加载中
图(12)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-12-09
  • 修回日期:  2026-01-10
  • 录用日期:  2026-01-08
  • 网络出版日期:  2026-01-29

目录

    /

    返回文章
    返回