Development and prospects of radiation sources from high field laser-irradiated structured targets
-
摘要: 微纳结构靶具有从激光焦斑尺度至亚波长尺度的周期或非周期性结构,能够有效调控激光-靶相互作用过程中的能量传递、电磁场分布、粒子输运与辐射产生过程,是创造高能量密度物质状态、提高激光辐射源能量与亮度的重要技术途径。本文将针对超短超强激光和微纳结构靶相互作用的物理机理、研究方法和发展趋势,详细介绍基于微纳结构靶的强场激光辐射源研究进展,包括迄今已经趋于实用的基于数十太瓦至百太瓦激光装置产生的强流粒子束及射线源,以及当前理论研究热点——量子电动力学辐射、高次谐波等新型光源等,最后对基于微纳结构靶的辐射源技术发展需求和研究趋势进行展望。Abstract: Micro- and nano-structured targets represent a pivotal technological pathway for controlling laser-target interactions and advancing intense radiation sources. This review provides a comprehensive overview of the development and future prospects of intense laser-driven radiation sources based on structured targets. First, it outlines their key role in regulating laser-target coupling, energy absorption, and radiation generation. It then summarizes recent advances in experimental and theoretical research, followed by a discussion of frontier physical and technical progress with petawatt-class laser systems. Finally, the future research trends and technological development requirements for the radiation sources based on laser-irradiated structured targets are prospected.
-
Key words:
- structured target /
- laser acceleration /
- hot electron /
- intense radiation source
-
图 3 纳米刷靶前后表面X射线焦斑图像证实准直输运[55]
Figure 3. X-ray spot of front and rear surfaces of nanobrush target
-
[1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8 [2] Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014 [3] Lozhkarev V V, Freidman G I, Ginzburg V N, et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals[J]. Laser Physics Letters, 2007, 4(6): 421-427. doi: 10.1002/lapl.200710008 [4] Chu Yuxi, Liang Xiaoyan, Yu Lianghong, et al. High-contrast 2.0 Petawatt Ti: sapphire laser system[J]. Optics Express, 2013, 21(24): 29231-29239. doi: 10.1364/OE.21.029231 [5] Zhou Kainan, Huang Xiaojun, Zeng Xiaoming, et al. Improvement of focusing performance for a multi-petawatt OPCPA laser facility[J]. Laser Physics, 2018, 28: 125301. doi: 10.1088/1555-6611/aae0db [6] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36 [7] Ouatu I, Spiers B T, Aboushelbaya R, et al. Ionization states for the multipetawatt laser-QED regime[J]. Physical Review E, 2022, 106: 015205. doi: 10.1103/PhysRevE.106.015205 [8] 周维民, 于明海, 张天奎, 等. 基于皮秒拍瓦激光的高分辨X射线背光照相研究[J]. 中国激光, 2020, 47: 0500010 doi: 10.3788/CJL202047.0500010Zhou Weimin, Yu Minghai, Zhang Tiankui, et al. High-resolution X-ray backlight radiography using picosecond petawatt laser[J]. Chinese Journal of Lasers, 2020, 47: 0500010 doi: 10.3788/CJL202047.0500010 [9] Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 2018, 8: 8400. doi: 10.1038/s41598-018-26785-8 [10] Lebedev S V, Frank A, Ryutov D D. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities[J]. Reviews of Modern Physics, 2019, 91: 025002. doi: 10.1103/RevModPhys.91.025002 [11] Park H S, Maddox B R, Giraldez E, et al. High-resolution 17-75keV backlighters for high energy density experiments[J]. Physics of Plasmas, 2008, 15: 072705. doi: 10.1063/1.2957918 [12] Vaughan K, Moore A S, Smalyuk V, et al. High-resolution 22-52 keV backlighter sources and application to X-ray radiography[J]. High Energy Density Physics, 2013, 9(3): 635-641. doi: 10.1016/j.hedp.2013.05.006 [13] Rosmej O N, Gyrdymov M, Günther M M, et al. High-current laser-driven beams of relativistic electrons for high energy density research[J]. Plasma Physics and Controlled Fusion, 2020, 62: 115024. doi: 10.1088/1361-6587/abb24e [14] 税敏, 杨曦, 于明海, 等. 锡-泡沫界面不稳定性增长与混合实验研究[J]. 中国激光, 2021, 48: 0703002 doi: 10.3788/CJL202148.0703002Shui Min, Yang Xi, Yu Minghai, et al. Instability growth of tin-foam interface and mixing experiment[J]. Chinese Journal of Lasers, 2021, 48: 0703002 doi: 10.3788/CJL202148.0703002 [15] Chu Genbai, Xi Tao, Yu Minghai, et al. High-energy X-ray radiography of laser shock loaded metal dynamic fragmentation using high-intensity short-pulse laser[J]. Review of Scientific Instruments, 2018, 89: 115106. doi: 10.1063/1.5034401 [16] Courtois C, Edwards R, Compant La Fontaine A, et al. Characterisation of a MeV Bremsstrahlung X-ray source produced from a high intensity laser for high areal density object radiography[J]. Physics of Plasmas, 2013, 20: 083114. doi: 10.1063/1.4818505 [17] Tommasini R, Landen O L, Hopkins L B, et al. Time-resolved fuel density profiles of the stagnation phase of indirect-drive inertial confinement implosions[J]. Physical Review Letters, 2020, 125: 155003. doi: 10.1103/PhysRevLett.125.155003 [18] Fournier K B, May M J, Colvin J D, et al. Multi-keV X-ray source development experiments on the National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 082701. doi: 10.1063/1.3458904 [19] Tommasini R, Bailey C, Bradley D K, et al. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 053104. doi: 10.1063/1.4983137 [20] Kong Defeng, Zhang Guoqiang, Shou Yinren, et al. High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions[J]. Matter and Radiation at Extremes, 2022, 7: 064403. doi: 10.1063/5.0120845 [21] Capeluto M G, Curtis A, Calvi C, et al. Deuterated polyethylene nanowire arrays for high-energy density physics[J]. High Power Laser Science and Engineering, 2021, 9: e34. doi: 10.1017/hpl.2021.21 [22] Hadjisolomou P, Jeong T M, Valenta P, et al. Attosecond gamma-ray flashes and electron-positron pairs in dyadic laser interaction with microwire[J]. Physical Review E, 2025, 111: 025201. doi: 10.1103/PhysRevE.111.025201 [23] Vallières S, Salvadori M, Permogorov A, et al. Enhanced laser-driven proton acceleration using nanowire targets[J]. Scientific Reports, 2021, 11: 2226. doi: 10.1038/s41598-020-80392-0 [24] Chao Yue, Cao Lihua, Zheng Chunyang, et al. Enhanced proton acceleration from laser interaction with a tailored nanowire target[J]. Applied Sciences, 2022, 12: 1153. doi: 10.3390/app12031153 [25] 张天奎, 单连强, 于明海, 等. 皮秒激光驱动的X射线源编码高分辨照相技术[J]. 强激光与粒子束, 2022, 34: 122001 doi: 10.11884/HPLPB202234.220186Zhang Tiankui, Shan Lianqiang, Yu Minghai, et al. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34: 122001 doi: 10.11884/HPLPB202234.220186 [26] Ji Liangliang, Jiang Sheng, Pukhov A, et al. Exploring novel target structures for manipulating relativistic laser-plasma interaction[J]. High Power Laser Science and Engineering, 2017, 5: e14. doi: 10.1017/hpl.2017.12 [27] Huang T W, Kim C M, Zhou C T, et al. Highly efficient laser-driven Compton gamma-ray source[J]. New Journal of Physics, 2019, 21: 013008. doi: 10.1088/1367-2630/aaf8c4 [28] Zhang Liangqi, Wu Shaodong, Huang Hairong, et al. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array[J]. Physics of Plasmas, 2021, 28: 023110. doi: 10.1063/5.0030909 [29] Rubovič P, Bonasera A, Burian P, et al. Measurements of D-D fusion neutrons generated in nanowire array laser plasma using Timepix3 detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985: 164680. doi: 10.1016/j.nima.2020.164680 [30] Muoio A, Altana C, Frassetto M, et al. Nanostructured targets irradiation by ns-laser for nuclear astrophysics applications: first results[J]. Journal of Instrumentation, 2017, 12: C03076. doi: 10.1088/1748-0221/12/03/C03076 [31] Kulcsár G, AlMawlawi D, Budnik F W, et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets[J]. Physical Review Letters, 2000, 84(22): 5149-5152. doi: 10.1103/PhysRevLett.84.5149 [32] Kahaly S, Yadav S K, Wang W M, et al. Near-complete absorption of intense, ultrashort laser light by sub-λ gratings[J]. Physical Review Letters, 2008, 101: 145001. doi: 10.1103/PhysRevLett.101.145001 [33] Freidberg J P, Mitchell R W, Morse R L, et al. Resonant absorption of laser light by plasma targets[J]. Physical Review Letters, 1972, 28(13): 795-799. doi: 10.1103/PhysRevLett.28.795 [34] Wilks S C, Kruer W L, Tabak M, et al. Absorption of ultra-intense laser pulses[J]. Physical Review Letters, 1992, 69(9): 1383-1386. doi: 10.1103/PhysRevLett.69.1383 [35] Malka G, Miquel J L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target[J]. Physical Review Letters, 1996, 77(1): 75-78. doi: 10.1103/PhysRevLett.77.75 [36] Brunel F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 1987, 59(1): 52-55. doi: 10.1103/PhysRevLett.59.52 [37] Brunel F. Anomalous absorption of high intensity subpicosecond laser pulses[J]. Physics of Fluids, 1988, 31(9): 2714-2719. doi: 10.1063/1.867001 [38] Jiang S, Krygier A G, Schumacher D W, et al. Effects of front-surface target structures on properties of relativistic laser-plasma electrons[J]. Physical Review E, 2014, 89: 013106. doi: 10.1103/PhysRevE.89.013106 [39] Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 2021, 23: 023031. doi: 10.1088/1367-2630/abdf9a [40] Babjak R, Willingale L, Arefiev A, et al. Direct laser acceleration in underdense plasmas with multi-PW lasers: a path to high-charge, GeV-class electron bunches[J]. Physical Review Letters, 2024, 132: 125001. doi: 10.1103/PhysRevLett.132.125001 [41] Rosmej O N, Gyrdymov M, Andreev N E, et al. Advanced plasma target from pre-ionized low-density foam for effective and robust direct laser acceleration of electrons[J]. High Power Laser Science and Engineering, 2025, 13: e3. doi: 10.1017/hpl.2024.85 [42] Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target[J]. Physics of Plasmas, 2010, 17: 043103. doi: 10.1063/1.3360298 [43] Yang Yue, Li Boyuan, Yan Yonghong, et al. Investigation on the transport efficiency of fast electrons with double-layer Kα fluorescence measurement[J]. Physics of Plasmas, 2019, 26: 073101. doi: 10.1063/1.5096933 [44] 李博原. 超强激光产生的超热电子在微纳结构靶中的输运研究[D]. 北京: 中国工程物理研究院, 2017Li Boyuan. Study on the transport of ultra-intense laser-driven fast electron beam in nanostructure targets[D]. Beijing: China Academy of Engineering Physics, 2017 [45] Yang Yue, Li Boyuan, Wu Yuchi, et al. Manipulation and optimization of electron transport by nanopore array targets[J]. Plasma Science and Technology, 2021, 23: 015001. doi: 10.1088/2058-6272/abbd37 [46] Park H S, Chambers D M, Chung H K, et al. High-energy Kα radiography using high-intensity, short-pulse lasers[J]. Physics of Plasmas, 2006, 13: 056309. doi: 10.1063/1.2178775 [47] Wang Jian, Zhao Zongqing, He Weihua, et al. Radiography of a Kα X-ray source generated through ultrahigh picosecond laser-nanostructure target interaction[J]. Chinese Optics Letters, 2015, 13: 031001. [48] Courtois C, Edwards R, Compant La Fontaine A, et al. High-resolution multi-MeV X-ray radiography using relativistic laser-solid interaction[J]. Physics of Plasmas, 2011, 18: 023101. doi: 10.1063/1.3551738 [49] Lemos N, Albert F, Shaw J L, et al. Bremsstrahlung hard X-ray source driven by an electron beam from a self-modulated laser wakefield accelerator[J]. Plasma Physics and Controlled Fusion, 2018, 60: 054008. doi: 10.1088/1361-6587/aab3b5 [50] Phuoc K T, Fitour R, Tafzi A, et al. Demonstration of the ultrafast nature of laser produced betatron radiation[J]. Physics of Plasmas, 2007, 14: 080701. doi: 10.1063/1.2754624 [51] Phuoc K T, Esarey E, Leurent V, et al. Betatron radiation from density tailored plasmas[J]. Physics of Plasmas, 2008, 15: 063102. doi: 10.1063/1.2918657 [52] Thomas A G R, Krushelnick K. Betatron X-ray generation from electrons accelerated in a plasma cavity in the presence of laser fields[J]. Physics of Plasmas, 2009, 16: 103103. doi: 10.1063/1.3237089 [53] Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802 [54] Rosmej O N, Shen X F, Pukhov A, et al. Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity[J]. Matter and Radiation at Extremes, 2021, 6: 048401. doi: 10.1063/5.0042315 [55] Zhao Zongqing, Cao Lihua, Cao Leifeng, et al. Acceleration and guiding of fast electrons by a nanobrush target[J]. Physics of Plasmas, 2010, 17: 123108. doi: 10.1063/1.3507292 [56] Ji Yanling, Jiang Gang, Wu Weidong, et al. Efficient generation and transportation of energetic electrons in a carbon nanotube array target[J]. Applied Physics Letters, 2010, 96: 041504. doi: 10.1063/1.3298016 [57] Zigler A, Palchan T, Bruner N, et al. 5.5-7.5 MeV proton generation by a moderate-intensity ultrashort-pulse laser interaction with H2O nanowire targets[J]. Physical Review Letters, 2011, 106: 134801. doi: 10.1103/PhysRevLett.106.134801 [58] Margarone D, Klimo O, Kim I J, et al. Laser-driven proton acceleration enhancement by nanostructured foils[J]. Physical Review Letters, 2012, 109: 234801. doi: 10.1103/PhysRevLett.109.234801 [59] Zigler A, Eisenman S, Botton M, et al. Enhanced proton acceleration by an ultrashort laser interaction with structured dynamic plasma targets[J]. Physical Review Letters, 2013, 110: 215004. doi: 10.1103/PhysRevLett.110.215004 [60] Jiang S, Ji L L, Audesirk H, et al. Microengineering laser plasma interactions at relativistic intensities[J]. Physical Review Letters, 2016, 116: 085002. doi: 10.1103/PhysRevLett.116.085002 [61] Khaghani D, Lobet M, Borm B, et al. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy[J]. Scientific Reports, 2017, 7: 11366. doi: 10.1038/s41598-017-11589-z [62] Snyder J, Ji L L, George K M, et al. Relativistic laser driven electron accelerator using micro-channel plasma targets[J]. Physics of Plasmas, 2019, 26: 033110. doi: 10.1063/1.5087409 [63] Dozières M, Petrov G M, Forestier-Colleoni P, et al. Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency[J]. Plasma Physics and Controlled Fusion, 2019, 61: 065016. doi: 10.1088/1361-6587/ab157c [64] Moreau A, Hollinger R, Calvi C, et al. Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities[J]. Plasma Physics and Controlled Fusion, 2020, 62: 014013. doi: 10.1088/1361-6587/ab4d0c [65] Gizzi L A, Cristoforetti G, Baffigi F, et al. Intense proton acceleration in ultrarelativistic interaction with nanochannels[J]. Physical Review Research, 2020, 2: 033451. doi: 10.1103/PhysRevResearch.2.033451 [66] Cristoforetti G, Baffigi F, Brandi F, et al. Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2 nanotube array targets[J]. Plasma Physics and Controlled Fusion, 2020, 62: 114001. doi: 10.1088/1361-6587/abb5e3 [67] Ebert T, Neumann N W, Döhl L N K, et al. Enhanced brightness of a laser-driven X-ray and particle source by microstructured surfaces of silicon targets[J]. Physics of Plasmas, 2020, 27: 043106. doi: 10.1063/1.5125775 [68] Bailly-Grandvaux M, Kawahito D, McGuffey C, et al. Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses[J]. Physical Review E, 2020, 102: 021201(R). [69] Jiang S, Link A, Canning D, et al. Enhancing positron production using front surface target structures[J]. Applied Physics Letters, 2021, 118: 094101. doi: 10.1063/5.0038222 [70] Curtis A, Hollinger R, Calvi C, et al. Ion acceleration and D-D fusion neutron generation in relativistically transparent deuterated nanowire arrays[J]. Physical Review Research, 2021, 3: 043181. doi: 10.1103/PhysRevResearch.3.043181 [71] Qin Chengyu, Zhang Hui, Li Shun, et al. High efficiency laser-driven proton sources using 3D-printed micro-structure[J]. Communications Physics, 2022, 5: 124. doi: 10.1038/s42005-022-00900-8 [72] 杨月, 孙斌, 邓志刚, 等. 拍瓦激光驱动纳米刷靶高品质质子束的产生[J]. 强激光与粒子束, 2024, 36: 101004 doi: 10.11884/HPLPB202436.230440Yang Yue, Sun Bin, Deng Zhigang, et al. Generation of high-quality proton beam in nanobrush targets driven by PW laser pulse[J]. High Power Laser and Particle Beams, 2024, 36: 101004 doi: 10.11884/HPLPB202436.230440 [73] Nishikawa T, Nakano H, Oguri K, et al. Nanocylinder-array structure greatly increases the soft X-Ray intensity generated from femtosecond-laser-produced plasma[J]. Applied Physics B, 2001, 73(2): 185-188. doi: 10.1007/s003400100625 [74] Rajeev P P, Taneja P, Ayyub P, et al. Metal nanoplasmas as bright sources of hard X-ray pulses[J]. Physical Review Letters, 2003, 90: 115002. doi: 10.1103/PhysRevLett.90.115002 [75] Rajeev P P, Ayyub P, Bagchi S, et al. Nanostructures, local fields, and enhanced absorption in intense light-matter interaction[J]. Optics Letters, 2004, 29(22): 2662-2664. doi: 10.1364/OL.29.002662 [76] Mondal S, Chakraborty I, Ahmad S, et al. Highly enhanced hard X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses[J]. Physical Review B, 2011, 83: 035408. doi: 10.1103/PhysRevB.83.035408 [77] Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Control of the hot electrons produced by laser interaction with nanolayered target[J]. Physics of Plasmas, 2010, 17: 103106. doi: 10.1063/1.3481463 [78] Zhao Jincui, Zheng Jianhua, Cao Lihua, et al. Monte Carlo simulations of Kα source generated by hot electrons-nanobrush target interactions[J]. Physics of Plasmas, 2016, 23: 093102. doi: 10.1063/1.4962186 [79] Cao Lihua, Chen Mo, Zhao Zongqing, et al. Efficient laser absorption and enhanced electron yield in the laser-target interaction by using a cone-nanolayer target[J]. Physics of Plasmas, 2011, 18: 054501. doi: 10.1063/1.3589303 [80] Yu Jinqing, Zhou Weimin, Cao Lihua, et al. Enhancement in coupling efficiency from laser to forward hot electrons by conical nanolayered targets[J]. Applied Physics Letters, 2012, 100: 204101. doi: 10.1063/1.4718735 [81] Wang Huan, Cao Lihua, Zhao Zongqing, et al. Fast electron beam with manageable spotsize from laser interaction with the tailored cone-nanolayer target[J]. Laser and Particle Beams, 2012, 30(4): 553-558. doi: 10.1017/S0263034612000493 [82] Kodama R, Sentoku Y, Chen Z L, et al. Plasma devices to guide and collimate a high density of MeV electrons[J]. Nature, 2004, 432(7020): 1005-1008. doi: 10.1038/nature03133 [83] Green J S, Lancaster K L, Akli K U, et al. Surface heating of wire plasmas using laser-irradiated cone geometries[J]. Nature Physics, 2007, 3(12): 853-856. doi: 10.1038/nphys755 [84] Sawada H, Higginson D P, Link A, et al. Characterizing the energy distribution of laser-generated relativistic electrons in cone-wire targets[J]. Physics of Plasmas, 2012, 19: 103108. doi: 10.1063/1.4759163 [85] Nakajima H, Tokita S, Inoue S, et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target[J]. Physical Review Letters, 2013, 110: 155001. doi: 10.1103/PhysRevLett.110.155001 [86] Singh P K, Chatterjee G, Lad A D, et al. Efficient generation and guiding of megaampere relativistic electron current by silicon nanowires[J]. Applied Physics Letters, 2012, 100: 244104. doi: 10.1063/1.4729010 [87] Chatterjee G, Singh P K, Ahmed S, et al. Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays[J]. Physical Review Letters, 2012, 108: 235005. doi: 10.1103/PhysRevLett.108.235005 [88] Cristoforetti G, Anzalone A, Baffigi F, et al. Investigation on laser-plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target[J]. Plasma Physics and Controlled Fusion, 2014, 56: 095001. doi: 10.1088/0741-3335/56/9/095001 [89] Cristoforetti G, Londrillo P, Singh P K, et al. Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets[J]. Scientific Reports, 2017, 7: 1479. doi: 10.1038/s41598-017-01677-5 [90] Fedeli L, Formenti A, Cialfi L, et al. Ultra-intense laser interaction with nanostructured near-critical plasmas[J]. Scientific Reports, 2018, 8: 3834. doi: 10.1038/s41598-018-22147-6 [91] Bin J H, Ma W J, Wang H Y, et al. Relativistic plasma optics enabled by near-critical density nanostructured material[J]. Scientific Reports, 2014, 6: 23256. [92] Bin J H, Ma W J, Wang H Y, et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas[J]. Physical Review Letters, 2015, 115: 064801. doi: 10.1103/PhysRevLett.115.064801 [93] Bin J H, Yeung M, Gong Z, et al. Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma[J]. Physical Review Letters, 2018, 120: 074801. doi: 10.1103/PhysRevLett.120.074801 [94] Ma W J, Kim I J, Yu J Q, et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil[J]. Physical Review Letters, 2019, 122: 014803. doi: 10.1103/PhysRevLett.122.014803 [95] Ji L L, Snyder J, Pukhov A, et al. Towards manipulating relativistic laser pulses with micro-tube plasma lenses[J]. Scientific Reports, 2016, 6: 23256. doi: 10.1038/srep23256 [96] Habara H, Honda S, Katayama M, et al. Efficient energy absorption of intense ps-laser pulse into nanowire target[J]. Physics of Plasmas, 2016, 23: 063105. doi: 10.1063/1.4953092 [97] Habara H, Lad A D, Nagami R, et al. Micro-optics for ultra-intense lasers[J]. AIP Advances, 2021, 11: 035214. doi: 10.1063/5.0038023 [98] Sedov M V, Faenov A Y, Andreev A A, et al. Features of the generation of fast particles from microstructured targets irradiated by high intensity, picosecond laser pulses[J]. Laser and Particle Beams, 2019, 37(2): 176-183. doi: 10.1017/S0263034619000351 [99] Robinson A P L, Sherlock M. Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition[J]. Physics of Plasmas, 2007, 14: 083105. doi: 10.1063/1.2768317 [100] Robinson A P L, Key M H, Tabak M. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard[J]. Physical Review Letters, 2012, 108: 125004. doi: 10.1103/PhysRevLett.108.125004 [101] Kar S, Robinson A P L, Carroll D C, et al. Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields[J]. Physical Review Letters, 2009, 102: 055001. doi: 10.1103/PhysRevLett.102.055001 [102] Ramakrishna B, Kar S, Robinson A P L, et al. Laser-driven fast electron collimation in targets with resistivity boundary[J]. Physical Review Letters, 2010, 105: 135001. doi: 10.1103/PhysRevLett.105.135001 [103] Chawla S, Wei M S, Mishra R, et al. Effect of target material on fast-electron transport and resistive collimation[J]. Physical Review Letters, 2013, 110: 025001. doi: 10.1103/PhysRevLett.110.025001 [104] Debayle A, Gremillet L, Honrubia J J, et al. Reduction of the fast electron angular dispersion by means of varying-resistivity structured targets[J]. Physics of Plasmas, 2013, 20: 013109. doi: 10.1063/1.4789451 [105] Li Boyuan, Zhang Zhimeng, Wang Jian, et al. Transport of fast electrons in a nanowire array with collisional effects included[J]. Physics of Plasmas, 2015, 22: 123118. doi: 10.1063/1.4938515 [106] Wu Sizhong, Zhou Cangtao, Zhu Shaoping. Effect of density profile on beam control of intense laser-generated fast electrons[J]. Physics of Plasmas, 2010, 17: 063103. doi: 10.1063/1.3432695 [107] Cai Hongbo, Zhu Shaoping, He X T, et al. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses[J]. Physics of Plasmas, 2011, 18: 023106. doi: 10.1063/1.3553453 [108] Cai Hongbo, Zhu Shaoping, Chen Mo, et al. Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas[J]. Physical Review E, 2011, 83: 036408. doi: 10.1103/PhysRevE.83.036408 [109] Yang X H, Borghesi M, Robinson A P L. Fast-electron self-collimation in a plasma density gradient[J]. Physics of Plasmas, 2012, 19: 062702. doi: 10.1063/1.4729322 [110] Zhuo H B, Yang X H, Zhou C T, et al. Effect of resistivity gradient on laser-driven electron transport and ion acceleration[J]. Physics of Plasmas, 2013, 20: 093103. doi: 10.1063/1.4820933 [111] Singh P K, Chakraborty I, Chatterjee G, et al. Enhanced transport of relativistic electrons through nanochannels[J]. Physical Review Accelerators and Beams, 2013, 16: 063401. doi: 10.1103/PhysRevSTAB.16.063401 [112] Yu Jinqing, Zhou Weimin, Jin Xiaolin, et al. Improvement of proton energy in high-intensity laser-nanobrush target interactions[J]. Laser and Particle Beams, 2012, 30(2): 307-311. doi: 10.1017/S0263034612000134 [113] Yu Jinqing, Zhao Zongqing, Jin Xiaolin, et al. Laser-driven proton acceleration using a conical nanobrush target[J]. Physics of Plasmas, 2012, 19: 053108. doi: 10.1063/1.4714809 [114] Xie R, Cao L H, Chao Y, et al. Improvement of laser absorption and control of particle acceleration by subwavelength nanowire target[J]. Physics of Plasmas, 2020, 27: 123108. doi: 10.1063/5.0022144 [115] Li Xueming, Chao Yue, Liu Deji, et al. Enhanced proton acceleration from laser interaction with curved surface nanowire targets[J]. Journal of Plasma Physics, 2023, 89: 905890113. doi: 10.1017/S0022377823000132 [116] Dalui M, Kundu M, Sarkar S, et al. Mass selection in laser-plasma ion accelerator on nanostructured surfaces[J]. Physics of Plasmas, 2017, 24: 010703. doi: 10.1063/1.4973887 [117] Andreev A, Kumar N, Platonov K, et al. Efficient generation of fast ions from surface modulated nanostructure targets irradiated by high intensity short-pulse lasers[J]. Physics of Plasmas, 2011, 18: 103103. doi: 10.1063/1.3641965 [118] Andreev A A, Nickles P V, Platonov K Y. Generation and transport of energetic electrons in nanowire targets irradiated by relativistic intense laser pulses[J]. Plasma Physics and Controlled Fusion, 2014, 56: 084005. doi: 10.1088/0741-3335/56/8/084005 [119] Andreev A A, Sedov M V, Platonov K Y, et al. Controlling energy distribution of fast ions and X-ray emission via target reliefs in ultrafast and relativistic laser plasma interaction[J]. Physics of Plasmas, 2019, 26: 113110. doi: 10.1063/1.5119773 [120] Lübcke A, Andreev A A, Höhm S, et al. Prospects of target nanostructuring for laser proton acceleration[J]. Scientific Reports, 2017, 7: 44030. doi: 10.1038/srep44030 [121] Jirka M, Klimo O, Vranic M, et al. QED cascade with 10 PW-class lasers[J]. Scientific Reports, 2017, 7: 15302. doi: 10.1038/s41598-017-15747-1 [122] Turcu I C E, Shen B, Neely D, et al. Quantum electrodynamics experiments with colliding petawatt laser pulses[J]. High Power Laser Science and Engineering, 2019, 7: e10. doi: 10.1017/hpl.2018.66 [123] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177 [124] Zhu Xinglong, Yin Yan, Yu Tongpu, et al. Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone[J]. New Journal of Physics, 2015, 17: 053039. doi: 10.1088/1367-2630/17/5/053039 [125] Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 2017, 25(18): 21583-21593. doi: 10.1364/OE.25.021583 [126] Liu Jianxun, Ma Yanyun, Yu Tongpu, et al. Dense pair plasma generation by two laser pulses colliding in a cylinder channel[J]. Chinese Physics B, 2017, 26: 035202. doi: 10.1088/1674-1056/26/3/035202 [127] Liu Jianxun, Ma Yanyun, Yu Tongpu, et al. Enhanced electron–positron pair production by ultra intense laser irradiating a compound target[J]. Plasma Physics and Controlled Fusion, 2016, 58: 125007. doi: 10.1088/0741-3335/58/12/125007 [128] Jiang K, Pukhov A, Zhou C T. TJ cm-3 high energy density plasma formation from intense laser-irradiated foam targets composed of disordered carbon nanowires[J]. Plasma Physics and Controlled Fusion, 2021, 63: 015014. doi: 10.1088/1361-6587/abc89e [129] Purvis M A, Shlyaptsev V N, Hollinger R, et al. Relativistic plasma nanophotonics for ultrahigh energy density physics[J]. Nature Photonics, 2013, 7(10): 796-800. doi: 10.1038/nphoton.2013.217 [130] Glenzer S H, Callahan D A, MacKinnon A J, et al. Cryogenic thermonuclear fuel implosions on the National Ignition Facility[J]. Physics of Plasmas, 2012, 19: 056318. doi: 10.1063/1.4719686 [131] Bargsten C, Hollinger R, Capeluto M G, et al. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: scaling to terabar pressures[J]. Science Advances, 2017, 3: e1601558. doi: 10.1126/sciadv.1601558 [132] Hollinger R, Bargsten C, Shlyaptsev V N, et al. Efficient picosecond X-ray pulse generation from plasmas in the radiation dominated regime[J]. Optica, 2017, 4(11): 1344-1349. doi: 10.1364/OPTICA.4.001344 [133] Curtis A, Calvi C, Tinsley J, et al. Micro-scale fusion in dense relativistic nanowire array plasmas[J]. Nature Communications, 2018, 9: 1077. doi: 10.1038/s41467-018-03445-z [134] Lécz Z, Andreev A. Bright synchrotron radiation from nano-forest targets[J]. Physics of Plasmas, 2017, 24: 033113. doi: 10.1063/1.4978573 [135] Lécz Z, Andreev A. Attosecond bunches of gamma photons and positrons generated in nanostructure targets[J]. Physical Review E, 2019, 99: 013202. doi: 10.1103/PhysRevE.99.013202 [136] Shou Yinren, Kong Defeng, Wang Pengjie, et al. High-efficiency water-window X-ray generation from nanowire array targets irradiated with femtosecond laser pulses[J]. Optics Express, 2021, 29(4): 5427-5436. doi: 10.1364/OE.417512 [137] Shou Yinren, Wang Pengjie, Lee S G, et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma[J]. Nature Photonics, 2023, 17(2): 137-142. doi: 10.1038/s41566-022-01114-8 [138] Pertot Y, Schmidt C, Matthews M, et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source[J]. Science, 2017, 355(6322): 264-267. doi: 10.1126/science.aah6114 [139] Kraus P M, Mignolet B, Baykusheva D, et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene[J]. Science, 2015, 350(6262): 790-795. doi: 10.1126/science.aab2160 [140] McPherson A, Gibson G, Jara H, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 1987, 4(4): 595-601. doi: 10.1364/JOSAB.4.000595 [141] Dromey B, Kar S, Bellei C, et al. Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces[J]. Physical Review Letters, 2007, 99: 085001. doi: 10.1103/PhysRevLett.99.085001 [142] Lavocat-Dubuis X, Matte J P. Numerical simulation of harmonic generation by relativistic laser interaction with a grating[J]. Physical Review E, 2009, 80: 055401(R). [143] Wang Shaoyi, Tan Fang, Yang Zuhua, et al. Selective generation of narrow-band harmonics by a relativistic laser pulse interaction with a detuned plasma grating[J]. Physical Review E, 2022, 105: 065207. doi: 10.1103/PhysRevE.105.065207 [144] Dawson J. One-dimensional plasma model[J]. Physics of Fluids, 1962, 5(4): 445-459. doi: 10.1063/1.1706638 [145] Birdsall C K, Fuss D. Clouds-in-Clouds, Clouds-in-Cells physics for many-body plasma simulation[J]. Journal of Computational Physics, 1969, 3(4): 494-511. doi: 10.1016/0021-9991(69)90058-8 [146] Welch D R, Rose D V, Clark R E, et al. Implementation of an non-iterative implicit electromagnetic field solver for dense plasma simulation[J]. Computer Physics Communications, 2004, 164(1/3): 183-188. doi: 10.1016/j.cpc.2004.06.028 [147] Welch D R, Rose D V, Cuneo M E, et al. Integrated simulation of the generation and transport of proton beams from laser-target interaction[J]. Physics of Plasmas, 2006, 13: 063105. doi: 10.1063/1.2207587 [148] Wu D, He X T, Yu W, et al. Particle-in-cell simulations of laser-plasma interactions at solid densities and relativistic intensities: the role of atomic processes[J]. High Power Laser Science and Engineering, 2018, 6: e50. doi: 10.1017/hpl.2018.41 [149] Wu D, He X T, Yu W, et al. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations[J]. Physical Review E, 2017, 95: 023208. doi: 10.1103/PhysRevE.95.023208 [150] Wu D, Yu W, Zhao Y T, et al. Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials[J]. Physical Review E, 2019, 100: 013208. doi: 10.1103/PhysRevE.100.013208 [151] Wu D, Yu W, Fritzsche S, et al. High-order implicit particle-in-cell method for plasma simulations at solid densities[J]. Physical Review E, 2019, 100: 013207. doi: 10.1103/PhysRevE.100.013207 [152] Wu D, Yu W, Fritzsche S, et al. Particle-in-cell simulation method for macroscopic degenerate plasmas[J]. Physical Review E, 2020, 102: 033312. doi: 10.1103/physreve.102.033312 [153] Pelliccia D, Paganin D M. X-ray phase imaging with a laboratory source using selective reflection from a mirror[J]. Optics Express, 2013, 21(8): 9308-9314. doi: 10.1364/OE.21.009308 [154] Zhu Pengfei, Zhu Y, Hidaka Y, et al. Femtosecond time-resolved MeV electron diffraction[J]. New Journal of Physics, 2015, 17: 063004. doi: 10.1088/1367-2630/17/6/063004 [155] Magesh Kumar K K, Tripathi V K. High power laser coupling to carbon nano-tubes and ion Coulomb explosion[J]. Physics of Plasmas, 2013, 20: 092103. doi: 10.1063/1.4819778 -
下载: