Volume 33 Issue 1
Nov.  2020
Turn off MathJax
Article Contents
Ren Jieru, Wang Jiale, Chen Benzheng, et al. Progress of intense heavy ion beam driven high energy density physics[J]. High Power Laser and Particle Beams, 2021, 33: 012005. doi: 10.11884/HPLPB202133.200339
Citation: Ren Jieru, Wang Jiale, Chen Benzheng, et al. Progress of intense heavy ion beam driven high energy density physics[J]. High Power Laser and Particle Beams, 2021, 33: 012005. doi: 10.11884/HPLPB202133.200339

Progress of intense heavy ion beam driven high energy density physics

doi: 10.11884/HPLPB202133.200339
  • Received Date: 2020-11-07
  • Rev Recd Date: 2020-12-31
  • Publish Date: 2020-11-19
  • Intense ion beams can quasi-isometrically heat any high-density sample and generate warm dense matter (WDM) with large scale, uniform state distribution without any shock wave inside. This kind of driver provides a new opportunity for the laboratory high energy density physics (HEDP) research. The typical intense ion beam accelerators around the world, as well as their critical parameters and research plans of HEDP study are introduced.The progress of ion driven WDM generation and evolution using PIC and hydrodynamic simulations is shown. The high energy electron beam radiography technique with high spatial resolution, high temporal evolution, and high penetrating ability is also introduced. The collisional and charge transfer processes of the interaction between low-to-medium energy ion and plasma are analyzed. The nonlinear effect during the intense ion beam stopping and transportation process are presented.
  • loading
  • [1]
    Hurricane O A, Callahan D A, Casey D T, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12: 800. doi: 10.1038/nphys3720
    [2]
    Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16: 810. doi: 10.1038/s41567-020-0878-9
    [3]
    Tateno S, Hirose K, Ohishi Y, et al. The structure of iron in Earth’s inner core[J]. Science, 2010, 330: 359-361. doi: 10.1126/science.1194662
    [4]
    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar[J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [5]
    Kritcher A, Doppner T, Swift D, et al. Probing matter at Gbar pressures at the NIF[J]. High Energy Density Physics, 2014, 10: 27-34. doi: 10.1016/j.hedp.2013.11.002
    [6]
    Hall C A. Isentropic compression experiments on the Sandia Z accelerator[J]. Physics of Plasmas, 2000, 7: 2069-2075. doi: 10.1063/1.874029
    [7]
    Hall C, Asay J, Knudson M, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72: 3587-3595. doi: 10.1063/1.1394178
    [8]
    Branitsky A V, Fedulov M V, Grabovsky E V, et al. Z-pinch implosion for ICF physics study on Angara-5-1[J]. AIP Conference Proceedings, 1997, 40: 125.
    [9]
    张思群, 王昆仑, 李晶, 等. 聚龙一号丝阵负载Z箍缩硬X射线能谱测量[J]. 强激光与粒子束, 2018, 30:105004. (Zhang Siqun, Wang Kunlun, Li Jing, et al. Measurement of hard X-ray spectrum during wire array implosion on PTS[J]. High Power Laser and Particle Beams, 2018, 30: 105004 doi: 10.11884/HPLPB201830.180183
    [10]
    赵永涛, 肖国青, 李福利. 基于现代加速器的惯性约束聚变物理研究现状及发展[J]. 物理, 2016, 45:98-107. (Zhao Yongtao, Xiao Guoqing, Li Fuli. The physics of inertial confinement fusion based on modern accelerators: status and perspectives[J]. Physics, 2016, 45: 98-107 doi: 10.7693/wl20160204
    [11]
    Schoenberg K, Bagnoud V, Blazevic A, et al. High-energy-density-science capabilities at the Facility for Antiproton and Ion Research[J]. Physics of Plasmas, 2020, 27: 043103. doi: 10.1063/1.5134846
    [12]
    Ni P, Hoffmann D, Kulish M, et al. Pyrometric system for temperature measurements of HED matter generated by intense heavy ion beams[J]. Journal de Physique IV, 2006, 133: 977-980.
    [13]
    Mintsev V, Kim V, Lomonosov I, et al. Non-ideal plasma and early experiments at FAIR: HIHEX-heavy ion heating and expansion[J]. Plasma of Physics, 2016, 56: 281-285. doi: 10.1002/ctpp.201500105
    [14]
    The GSI Helmholtzzentrum für Schwerionenforschung. FAIR — The Universe in the Lab[EB/OL]. https://www.gsi.de/en/researchaccelerators/fair.htm.
    [15]
    Institute of Modern Physics, CAS. The High Intensity Heavy-ion Accelerator Facility[EB/OL]. http://hiaf.impcas.ac.cn/.
    [16]
    Tahir N, Deutsch C, Fortov V, et al. Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt[J]. Physical Review Letters, 2005, 95: 035001. doi: 10.1103/PhysRevLett.95.035001
    [17]
    Tahir N A, Shutov A, Piriz A R, et al. Application of intense ion beams to planetary physics research at the Facility for Antiprotons and Ion Research facility[J]. Plasma of Physics, 2019, 59: e201800135. doi: 10.1002/ctpp.201800135
    [18]
    Cheng R, Zhou X, Wang Y, R, et al. Energy loss of protons in hydrogen plasma[J]. Laser and Particle Beams, 2018, 36(1): 98-104. doi: 10.1017/S0263034618000010
    [19]
    赵永涛, 张子民, 程锐, 等. 基于HIAF装置的高能量密度物理研究[J]. 中国科学: 物理学力学天文学, 2020, 50:112004. (Zhao Yongtao, Zhang Zimin, Cheng Rui, et al. High-energy-density physics based on HIAF[J]. Sci Sin-Phys Mech Astron, 2020, 50: 112004 doi: 10.1360/SSPMA-2020-0275
    [20]
    Seidl P A, Barnard J J, Feinberg E, et al. Irradiation of materials with short, intense ion pulses at NDCX-II[J]. Laser and Particle Beams, 2017, 35(2): 373-378. doi: 10.1017/S0263034617000295
    [21]
    Stepanov A D, Barnard J J, Friedman A et al. , Optimizing beam transport in rapidly compressing beams on the neutralized drift compression experiment-II[J]. Matter and Radiation at Extremes, 2018, 3: 78. doi: 10.1016/j.mre.2018.01.001
    [22]
    Kawata S, Karino T, Ogoyski A I. Review of heavy-ion inertial fusion physics[J]. Matter and Radiation at Extremes, 2016, 1, 89.
    [23]
    Sharkov B, Hoffmann D, Golubev A A, et al. High energy density physics with intense ion beams[J]. Matter and Radiation at Extremes, 2016, 1: 28-47. doi: 10.1016/j.mre.2016.01.002
    [24]
    Ingo Hofmann. Review of accelerator driven heavy ion nuclear fusion[J]. Matter and Radiation at Extremes, 2018, 3: 1. doi: 10.1016/j.mre.2017.12.001
    [25]
    Patel P K, Mackinnon A J, Key M H, et al. Isochoric heating of solid-density matter with an ultrafast proton beam[J]. Physical Review Letters, 2003, 91: 125004. doi: 10.1103/PhysRevLett.91.125004
    [26]
    Yuan Ping, Heather D, Whitley, et al. Heat-release equation of state and thermal conductivity of warm dense carbon by proton differential heating[J]. Physical Review E, 2019, 100: 043204. doi: 10.1103/PhysRevE.100.043204
    [27]
    Burkart F, Schmidt R, Raginel V, et al. Analysis of 440 GeV proton beam–matter interaction experiments at the High Radiation Materials test facility at CERN[J]. Journal of applied physics, 2015, 118: 055902. doi: 10.1063/1.4927721
    [28]
    Kim J, Qiao B, McGuffey C, et al. Self-consistent simulation of transport and energy deposition of intense laser-accelerated proton beams in solid-density matter[J]. Physical Review Letters, 2015, 115: 054801. doi: 10.1103/PhysRevLett.115.054801
    [29]
    Wu D, He X T, Yu W, et al. Monte Carlo approach to calculate ionization dynamics of hot solid density plasmas within particle-in-cell simulations[J]. Physical Review E, 2017, 95: 023208. doi: 10.1103/PhysRevE.95.023208
    [30]
    Wu D, He X T, Yu W, et al. Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations[J]. Physical Review E, 2017, 95: 023207. doi: 10.1103/PhysRevE.95.023207
    [31]
    Wu D, Yu W, Fritzsche S, et al. High-order implicit particle-in-cell method for plasma simulations at solid densities[J]. Physical Review E, 2019, 100: 013207. doi: 10.1103/PhysRevE.100.013207
    [32]
    Wu D, Yu W, Zhao Y, et al. Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials[J]. Physical Review E, 2019, 100: 013208. doi: 10.1103/PhysRevE.100.013208
    [33]
    Zhang Lin, Zhao Yongtao, Ren Jieru, et al. Warm-dense-matter state of iron generated by intense heavy-ion beams[J]. IEEE Trans Plasma Science, 2019, 47(1): 853-857. doi: 10.1109/TPS.2018.2857798
    [34]
    Ren Jieru, Zhao Yongtao, Cheng Rui, et al. Hydrodynamic response of solid target heated by heavy ion beams from future facility HIAF[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2017, 406: 703-707. doi: https://doi.org/10.1016/j.nimb.2017.03.018
    [35]
    Zhang Lin, Zhao Yongtap, Ren Jieru, et al. Two dimensional hydrodynamic simulations of metal targets under irradiation of intense proton beams: Effects of target materials[J]. Physics of Plasmas, 2018, 25: 113108. doi: 10.1063/1.5045585
    [36]
    Zhang Ya, Wei Jiang. Enhancement of valley polarization in graphene with an irradiating charged particle[J]. Physics of Plasmas, 2019, 26: 012102. doi: 10.1063/1.5070085
    [37]
    Merrill F, Harmon F, Hunt A, et al. Electron radiography[J]. Nuclear Instruments and Methods in Physics Research B, 2007, 261: 382-386. doi: 10.1016/j.nimb.2007.04.127
    [38]
    Merrill F E, Goett J, Gibbs J W, et al. Demonstration of transmission high energy electron microscopy[J]. Applied Physical Letters, 2018, 112: 144103. doi: 10.1063/1.5011198
    [39]
    Zhao Y, Zhang Z, Gai W, et al. High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC[J]. Laser and Particle Beams, 2016, 34(2): 338-342. doi: 10.1017/S0263034616000124
    [40]
    Zhou Zheng, Du Yingchao, Cao Shuchun, et al. Experiments on bright-field and darkfield high-energy electron imaging with thick target material[J]. Physical Review Accelerations and Beams, 2018, 21: 074701. doi: 10.1103/PhysRevAccelBeams.21.074701
    [41]
    Zhou Zheng, Fang Yu, Chen Han, et al. Visualizing the melting processes in ultrashort intense laser triggered gold mesh with high energy electron radiography[J]. Matter and Radiation at Extremes, 2019, 4: 065402. doi: 10.1063/1.5109855
    [42]
    Li Chikang, Petrasso R D. Fokker-Planck equation for moderately coupled plasmas[J]. Physical Review Letters, 1993, 70(20): 3063. doi: 10.1103/PhysRevLett.70.3063
    [43]
    Maynard G and Deutsch C. Born random phase approximation for ion stopping in an arbitrarily degenerate electron fluid[J]. Journal de Physique, 1985, 46(7): 1113-1122. doi: 10.1051/jphys:019850046070111300
    [44]
    Bethe H. Zur theorie des Durchgangs schneller Korpuskularstrahlen durch Materie[J]. Annalen der Physik, 1930, 397(3): 325-400. doi: 10.1002/andp.19303970303
    [45]
    Bloch F. Zur Bremsung rasch beweg Terteilchen beim Durchgang durch Materie[J]. Annalen der Physik, 1933, 408(3): 285-320. doi: 10.1002/andp.19334080303
    [46]
    Ding Y H, White A J, Hu S X, et al. Ab initio studies on the stopping power of warm dense matter with time-dependent orbital-free density functional theory[J]. Physical Review Letters, 2018, 121: 145001. doi: 10.1103/PhysRevLett.121.145001
    [47]
    Peter T, Meyer-ter-Vehn J. Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power[J]. Physical Review A, 1991, 43: 1998-2014. doi: 10.1103/PhysRevA.43.1998
    [48]
    Deutsch C, Maynard G, Chabot M, et al. Ion stopping in dense plasma target for high energy density physics[J]. The Open Plasma Physics Journal, 2010, 3(1).
    [49]
    Xu Ge, Barriga-Carrasco M D, Blazevic A, et al. Determination of hydrogen density by swift heavy ions[J]. Physical Review Letters, 2017, 119: 204801. doi: 10.1103/PhysRevLett.119.204801
    [50]
    Cayzac W, Bagnoud W, Basko M M, et al. Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities[J]. Physical Review E, 2015, 92: 053109. doi: 10.1103/PhysRevE.92.053109
    [51]
    Morales R, Barriga-Carrasco M D, Casas D. Instantaneous charge state of uranium projectiles in fully ionized plasmas from energy loss experiments[J]. Physics of Plasmas, 2017, 24: 042703. doi: 10.1063/1.4979132
    [52]
    Loisch G, Xu G, Blazevic A, et al. Hydrogen plasma dynamics in the spherical theta pinch plasma target for heavy ion stripping[J]. Physics of Plasmas, 2015, 22: 053502. doi: 10.1063/1.4919851
    [53]
    Rosmej O N, Blazevic A, Korostiy S, et al. Charge state and stopping dynamics of fast heavy ions in dense matter[J]. Physical Review A, 2015, 72: 052901.
    [54]
    Braenzel J, Barriga-Carrasco M D, Morales R, et al. Charge-transfer processes in warm dense matter: Selective spectral filtering for laser-accelerated ion beams[J]. Physical Review Letters, 2018, 120: 184801. doi: 10.1103/PhysRevLett.120.184801
    [55]
    Chen S N, Atzeni S, Gangolf T, et al. Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas[J]. Scientific Reports, 2018, 8(1): 14586. doi: 10.1038/s41598-018-32726-2
    [56]
    Chou Shaowei, Xu Jia, Khrennikov K, et al. Collective deceleration of laser-driven electron bunches[J]. Physical Review Letters, 2016, 117: 144801. doi: 10.1103/PhysRevLett.117.144801
    [57]
    Honda M, Meyer-ter-Vehn J, Pukhov A. Collective stopping and ion heating in relativistic-electron-beam transport for fast ignition[J]. Physical Review Letters, 2000, 85(10): 2128. doi: 10.1103/PhysRevLett.85.2128
    [58]
    Tatarakis M, Beg F N, Clark E L, et al. Propagation instabilities of high-intensity laser-produced electron beams[J]. Physical Review Letters, 2003, 90: 175001. doi: 10.1103/PhysRevLett.90.175001
    [59]
    Vauzour B, Debayle A, Vaisseau X, et al. Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas[J]. Physics of Plasmas, 2014, 21: 033101. doi: 10.1063/1.4867187
    [60]
    Cayzac W, Frank A, Ortner A, et al. Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter[J]. Nature Communications, 2017, 8: 15693. doi: 10.1038/ncomms15693
    [61]
    Zylstra A B, Frenje J A, Grabowski P E, et al. Measurement of charged-particle stopping in warm dense plasma[J]. Physical Review Letters, 2015, 114: 215002. doi: 10.1103/PhysRevLett.114.215002
    [62]
    Frenje J A, Florido R, Mancini R, et al. Experimental validation of low-Z ion-stopping formalisms around the Bragg peak in high-energy-density plasmas[J]. Physical Review Letters, 2019, 122: 015002. doi: 10.1103/PhysRevLett.122.015002
    [63]
    Chen Yanhong, Cheng Rui, Zhang Min, et al. Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss[J]. Acta Physica Sinica, 2018(4):83-89.
    [64]
    Zhao Y T, Zhang Y N, Cheng R, et al. Significant contribution of projectile excited states to the stopping of slow helium ions in hydrogen plasma[DB/OL]. 2020, arXiv: 2006.01380.
    [65]
    Chen B Z, Wu D, Ren J R, et al. Transport of intense particle beams in large-scale plasmas[J]. Physical Review E, 2020, 101: 051203. doi: 10.1103/PhysRevE.101.051203
    [66]
    Ren Jieru, Deng Zhigang, Qi Wei, et al. Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter[J]. Nature Communications, 2020, 11: 5157. doi: 10.1038/s41467-020-18986-5
    [67]
    Ren Jieru, Zhao Yongtao, Wei Wenqing, et al. Experimental scheme for investigation of stopping and fusion reactions initiated by laser-accelerated proton beams in a dense boron plasma[R]. GSI Annual Scientific Reports, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (1950) PDF downloads(186) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return