留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种大功率梳状谱微波产生方法

方进勇 翟畅 吴江牛 李奇威

方进勇, 翟畅, 吴江牛, 等. 一种大功率梳状谱微波产生方法[J]. 强激光与粒子束, 2023, 35: 083003. doi: 10.11884/HPLPB202335.230050
引用本文: 方进勇, 翟畅, 吴江牛, 等. 一种大功率梳状谱微波产生方法[J]. 强激光与粒子束, 2023, 35: 083003. doi: 10.11884/HPLPB202335.230050
Fang Jinyong, Zhai Chang, Wu Jiangniu, et al. A method for generating high power comb spectrum microwave[J]. High Power Laser and Particle Beams, 2023, 35: 083003. doi: 10.11884/HPLPB202335.230050
Citation: Fang Jinyong, Zhai Chang, Wu Jiangniu, et al. A method for generating high power comb spectrum microwave[J]. High Power Laser and Particle Beams, 2023, 35: 083003. doi: 10.11884/HPLPB202335.230050

一种大功率梳状谱微波产生方法

doi: 10.11884/HPLPB202335.230050
基金项目: 空间微波国家重点实验室基金项目(6142411332211)
详细信息
    作者简介:

    方进勇,jyfang504@163.com

  • 中图分类号: TN011

A method for generating high power comb spectrum microwave

  • 摘要: 梳状谱微波通常指具有中心频率,频谱分布与梳子形状相似,在一定带宽内多个频点具有能量分布的电磁波。梳状谱微波在电子对抗方面具有其它对抗方式所不具备的独特优势,在通信对抗、雷达对抗等领域显现出了极好的应用前景。该文介绍了一种大功率梳状谱微波产生方法,利用路径编码脉冲压缩技术将宽带连续波源产生的微波进行压缩,获得了中心频率2.85 GHz、频带宽度1 GHz、频谱间隙250 kHz、峰值功率160 kW的梳状谱微波。后续实验进一步表明,利用该方法获取的梳状谱微波的中心频率、频带宽度、频谱间隙都是灵活可调的,能够应用在多种电子对抗场景当中提升对抗干扰能力。
  • 图  1  梳状谱信号时域波形和频域波形

    Figure  1.  Time domain waveform and frequency domain waveform of comb spectrum signal

    图  2  路径编码脉冲压缩原理和多径效应示意图

    Figure  2.  Schematic diagram of channel encoding pulse compression principle and multipath effect

    图  3  路径编码脉冲压缩方法操作流程

    Figure  3.  Operation flow of channel encoding pulse compression method

    图  4  大功率梳状谱产生实验

    Figure  4.  High power comb spectrum generation experiment

    图  5  实验产生信号

    Figure  5.  Signals generated in the experiment

    图  6  脉冲压缩产生的不同中心频率、频带宽度、频谱间隙的大功率梳状谱信号及频谱图

    Figure  6.  High power comb spectrum signals with different center frequencies, band widths, and spectral gaps generated by pulse compression, and spectrum diagram

  • [1] Feng Xiaoyao, Chen Zhizhang, Xu Zhimeng. Time-reversal source reconstruction with electromagnetic kurtosis[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(10): 6816-6823. doi: 10.1109/TAP.2021.3069523
    [2] 王朗, 雷方燕, 胡进光. HPM短脉冲雷达发射信号的重构与仿真[J]. 强激光与粒子束, 2019, 31:063002 doi: 10.11884/HPLPB201931.190024

    Wang Lang, Lei Fangyan, Hu Jinguang. Reconstruction and simulation of HPM short pulse radar transmitting signal[J]. High Power Laser and Particle Beams, 2019, 31: 063002 doi: 10.11884/HPLPB201931.190024
    [3] 滕振宇, 杨力. 一种更高跳速梳状谱干扰新机制的研究[J]. 系统仿真学报, 2009, 21(19):6190-6194

    Teng Zhenyu, Yang Li. Research of new comb spectrum jamming mechanism with higher speed hopping[J]. Journal of System Simulation, 2009, 21(19): 6190-6194
    [4] 杨明, 刘超, 郑新. 大功率、高频段电真空器件在雷达技术领域的应用分析[J]. 现代雷达, 2017, 39(4):83-86,91

    Yang Ming, Liu Chao, Zheng Xin. A study on the application of high power and high frequency microwave vacuum devices in radar detection system[J]. Modern Radar, 2017, 39(4): 83-86,91
    [5] 沈爱国, 姜秋喜. 无载频超宽带雷达的梳状谱干扰技术[J]. 系统工程与电子技术, 2009, 31(1):66-68 doi: 10.3321/j.issn:1001-506X.2009.01.017

    Shen Aiguo, Jiang Qiuxi. Jamming the carrier-free ultra-wideband radar with comb spectrum signals[J]. Systems Engineering and Electronics, 2009, 31(1): 66-68 doi: 10.3321/j.issn:1001-506X.2009.01.017
    [6] 宋杰, 张华春, 郑慧芳. 基于微动调制的梳状谱灵巧噪声压制干扰[J]. 雷达科学与技术, 2020, 18(5):531-538,545 doi: 10.3969/j.issn.1672-2337.2020.05.011

    Song Jie, Zhang Huachun, Zheng Huifang. Suppression jamming of comb spectrum smart noise based on micro-motion modulation[J]. Radar Science and Technology, 2020, 18(5): 531-538,545 doi: 10.3969/j.issn.1672-2337.2020.05.011
    [7] 杨旋, 张友益. 对机载多功能雷达的干扰及其仿真[J]. 舰船电子对抗, 2011, 34(5):24-26,46 doi: 10.3969/j.issn.1673-9167.2011.05.007

    Yang Xuan, Zhang Youyi. Jamming to airborne multi-function radar and its simulation[J]. Shipboard Electronic Countermeasure, 2011, 34(5): 24-26,46 doi: 10.3969/j.issn.1673-9167.2011.05.007
    [8] Fang Jinyong, Wu Jiangniu, Huang Huijun, et al. Path encoding pulse compression for obtaining novel HPM with ultrahigh repetition frequency[J]. Laser and Particle Beams, 2021: 3259950.
    [9] Kumlu D, Erer I. Improved clutter removal in GPR by robust nonnegative matrix factorization[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 958-962. doi: 10.1109/LGRS.2019.2937749
    [10] Liu Songyang, Dong Chunxi, Xu Jin, et al. Analysis of rotating cross-eye jamming[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 939-942. doi: 10.1109/LAWP.2014.2387423
    [11] Paik H, Sastry N N, Santiprabha I. Effectiveness of repeat jamming using linear FM interference signal in monopulse receivers[J]. Procedia Computer Science, 2015, 57: 296-304. doi: 10.1016/j.procs.2015.07.489
    [12] Li Yuhan, Qi Wei, Deng Zhenmiao, et al. Monopulse instantaneous 3D imaging for wideband radar system[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 53-67. doi: 10.23919/JSEE.2021.000007
    [13] 姚昆, 杨霄鹏, 杨栋, 等. 一种多频点干扰信号产生方案[J]. 电子设计工程, 2011, 19(12):127-129,132

    Yao Kun, Yang Xiaopeng, Yang Dong, et al. A multi-frequency generation scheme of interference signal[J]. Electronic Design Engineering, 2011, 19(12): 127-129,132
    [14] 张逸楠, 王广学, 彭世蕤, 等. 基于无人机集群的近场线性稀疏阵列波束形成研究[J]. 电子与信息学报, 2023, 45(1):181-190

    Zhang Yinan, Wang Guangxue, Peng Shirui, et al. Beamforming research for near-field linear sparse array based on unmanned aerial vehicle swarm[J]. Journal of Electronics and Information, 2023, 45(1): 181-190
    [15] 张国利, 毕大平, 杨谢. 信道化接收机的梳状干扰效果分析[J]. 电子信息对抗技术, 2013, 28(4):47-50,60 doi: 10.3969/j.issn.1674-2230.2013.04.012

    Zhang Guoli, Bi Daping, Yang Xie. Jamming effect analysis of the channelized receiver with comb spectrum signal[J]. Electronic Information Warfare Technology, 2013, 28(4): 47-50,60 doi: 10.3969/j.issn.1674-2230.2013.04.012
    [16] 沈爱国, 姜秋喜. LFM-UWB雷达的梳状谱干扰技术[J]. 现代防御技术, 2008, 36(3):105-108 doi: 10.3969/j.issn.1009-086X.2008.03.025

    Shen Aiguo, Jiang Qiuxi. Jamming the LFM-UWB radar with comb spectrum signals[J]. Modern Defence Technology, 2008, 36(3): 105-108 doi: 10.3969/j.issn.1009-086X.2008.03.025
    [17] Yavuz M E, Teixeira F L. Frequency dispersion compensation in time reversal techniques for UWB electromagnetic waves[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 233-237. doi: 10.1109/LGRS.2005.846835
    [18] Drikas Z B, Addissie B D, Mendez V M, et al. Ultrawideband pulse compression in a single-port cavity using time-reversal techniques[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 177-180. doi: 10.1109/LMWC.2021.3118643
    [19] Fang Wenrao, Huang Wenhua, Huang Wenhui, et al. X-band high-efficiency high-power GaN power amplifier based on edge-triggered gate modulation[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(9): 884-887. doi: 10.1109/LMWC.2020.3013146
  • 加载中
图(6)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  107
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 修回日期:  2023-06-29
  • 录用日期:  2023-06-27
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回