留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导充压柱壳破坏模式与参数阈值分析

马特 邢晓冬 宋宏伟 黄晨光

马特, 邢晓冬, 宋宏伟, 等. 激光诱导充压柱壳破坏模式与参数阈值分析[J]. 强激光与粒子束, 2018, 30: 031001. doi: 10.11884/HPLPB201830.170299
引用本文: 马特, 邢晓冬, 宋宏伟, 等. 激光诱导充压柱壳破坏模式与参数阈值分析[J]. 强激光与粒子束, 2018, 30: 031001. doi: 10.11884/HPLPB201830.170299
Ma Te, Xing Xiaodong, Song Hongwei, et al. Failure mechanism and parameter threshold analysis of the internally pressurized cylinder shell under laser irradiation[J]. High Power Laser and Particle Beams, 2018, 30: 031001. doi: 10.11884/HPLPB201830.170299
Citation: Ma Te, Xing Xiaodong, Song Hongwei, et al. Failure mechanism and parameter threshold analysis of the internally pressurized cylinder shell under laser irradiation[J]. High Power Laser and Particle Beams, 2018, 30: 031001. doi: 10.11884/HPLPB201830.170299

激光诱导充压柱壳破坏模式与参数阈值分析

doi: 10.11884/HPLPB201830.170299
基金项目: 

国家自然科学基金项目 11472276

国家自然科学基金项目 11332011

国家自然科学基金项目 11502268

国防基础科研计划项目 JCKY201630B009

详细信息
    作者简介:

    马特(1992-),男,硕士,从事结构激光破坏效应方面的研究;18345157786@163.com

    通讯作者:

    宋宏伟(1973-),男,研究员,从事轻质多孔材料与结构力学、热结构分析与轻量化设计、激光的热力效应等研究;songhw@imech.ac.cn

  • 中图分类号: TN246

Failure mechanism and parameter threshold analysis of the internally pressurized cylinder shell under laser irradiation

  • 摘要: 通过数值计算模拟了激光诱导充压柱壳的热力破坏效应,研究了典型结构的动态爆裂过程,获得的破坏模式与实验结果基本一致。给出了三类典型破坏模式及其对应的参数范围,探讨了各类破坏模式的形成机理,并分析了不同光斑尺寸、壳体厚度条件下热软化效应对破坏内压阈值的影响,以及预内压与破坏时间的关系。研究结果表明:光斑半径越大、热软化程度越高,柱壳的破坏内压阈值越低,且破坏内压阈值随着壳体厚度的减小呈线性下降;给定激光参数和壳体参数下破坏时间随预充内压增大而减小并呈二次函数关系。给出了一种通过热软化程度预估激光诱导充压柱壳破坏时间的方法。
  • 图  1  数值计算与实验结果比较

    Figure  1.  Comparison of numerical result and experimental result

    图  2  柱壳破坏过程形貌特征图

    Figure  2.  Development of specimen failure

    图  3  三类典型破坏模式

    Figure  3.  Three typical failure modes

    图  4  不同光斑半径下温升曲线以及软化因子曲线

    Figure  4.  Temperature rise and softening factor curves at different spot radius

    图  5  不同光斑半径下充压比-软化因子曲线

    Figure  5.  Internal pressure ratio vs softening factor at different spot radius

    图  6  不同柱壳壁厚下充压比-软化因子曲线

    Figure  6.  Internal pressure ratio vs softening factor at different thickness of cylindrical shells

    图  7  不同软化因子下破坏内压阈值-壳体厚度曲线

    Figure  7.  Internal pressure vs thickness of cylindrical shells at different softening factors

    图  8  不同光斑半径下柱壳内压与破坏时间的关系

    Figure  8.  Failure time vs internal pressure at different spot radius of cylindrical shells

    图  9  不同壳体厚度下柱壳内压与破坏时间的关系

    Figure  9.  Failure time vs internal pressure at different thickness of cylindrical shells

    图  10  破坏点在温度曲线上的分布

    Figure  10.  Distribution of failure point on temperature curve

    表  1  不同温度下7A04铝合金热力学性能参数

    Table  1.   Thermal-mechanical parameters of 7A04 aluminum alloy varying with temperature

    T/K λ/(W·m-1· K-1) C/(J·kg-1· K-1) α/(10-6· K-1) E/GPa σs/MPa ν
    293 155 880 22.0 66 432 0.350
    373 159 921 23.6 61 402 0.355
    473 163 1005 25.2 50 235 0.360
    573 163 1047 26.8 46 118 0.365
    673 159 1089 28.4 43 69 0.370
    下载: 导出CSV

    表  2  第Ⅰ类破坏模式:“X”型整体爆裂的相关参数范围

    Table  2.   Parameters related to failure type Ⅰ: "X" type burst

    No. R h q0/(W·cm-2) P/Pb
    1 0.03 0.01 424 0.95~0.99
    2 0.05 0.01 153 0.95~0.99
    3 0.07 0.002~0.01 78 0.95~0.99
    4 0.1 0.01 38 0.95~0.99
    下载: 导出CSV

    表  3  第Ⅱ类破坏模式:裂纹扩展爆裂的相关参数范围

    Table  3.   Parameters related to failure type Ⅱ: crack propagation and burst

    No. R h q0/(W·cm-2) P/Pb
    1 0.03 0.01 424 0.7~0.85
    2 0.05 0.01 153 0.6~0.85
    3 0.07 0.004~0.01 78 0.6~0.85
    4 0.07 0.002 78 0.65~0.88
    5 0.1 0.01 38 0.55~0.85
    下载: 导出CSV

    表  4  第Ⅲ类破坏模式:局部穿孔的相关参数范围

    Table  4.   Parameters related to failure type Ⅲ: local perforation failure

    No. R h q0/(W·cm-2) P/Pb
    1 0.03 0.01 424 0.01~0.59
    2 0.05 0.01 153 0.01~0.53
    3 0.07 0.004~0.01 78 0.01~0.47
    4 0.07 0.002 78 0.01~0.61
    5 0.1 0.01 38 0.01~0.35
    下载: 导出CSV
  • [1] 宋宏伟, 黄晨光. 激光辐照诱导的热与力学效应[J]. 力学进展, 2016, 46 (1): 435-477.

    Song Hongwei, Huang Chenguang. Progress in thermal-mechanical effects induced by laser. Advances in Mechanics, 2016, 46 (1): 435-477
    [2] 黄亿辉, 宋宏伟, 黄晨光. 超声速气流下强激光辐照靶体失效数值模拟[J]. 强激光与粒子束, 2013, 25 (9): 2229-2234. doi: 10.3788/HPLPB20132509.2229

    Huang Yihui, Song Hongwei, Huang Chenguang. Numerical simulation of failure of target irradiated by high-power laser subjected to supersonic airflow. High Power Laser and Particle Beams, 2013, 25 (9): 2229-2234 doi: 10.3788/HPLPB20132509.2229
    [3] 丁宇, 蔡军. 连续波1064 nm激光辐照铝金属的热分布研究[J]. 光电技术应用, 2016, 31 (6): 28-32.

    Ding Yu, Cai Jun. Research on thermal distribution of 1064 nm continuous wave laser irradiation aluminum. Electro-Optic Technology Application, 2016, 31 (6): 28-32
    [4] 罗积军, 徐军, 侯素霞, 等. 强激光对燃烧室壳体的热-力毁伤研究[J]. 光子学报, 2012, 41 (6): 713-717.

    Luo Jijun, Xu Jun, Hou Suxia, et al. Thermal and dynamics damage in combustion chamber case under high power laser. Acta Photonica Sinica, 2012, 41 (6): 713-717
    [5] 赵剑衡, 孙承纬, 李思忠, 等. 激光辐照下充压铝柱壳爆裂断口分析[J]. 强激光与粒子束, 1998, 10 (1): 113-117. http://www.hplpb.com.cn/article/id/3292

    Zhao Jianheng, Sun Chengwei, Li Sizhong, et al. Fractographic analysis of aluminum cylindrical shells damaged by inner pressure and surface laser irradiation. High Power Laser and Particle Beams, 1998, 10 (1): 113-117 http://www.hplpb.com.cn/article/id/3292
    [6] 赵剑衡, 章冠人, 刘绪发. 激光辐照下充压柱壳结构变形的数值模拟[J]. 高压物理学报, 1996, 10 (4): 262-268.

    Zhao Jianheng, Zhang Guanren, Liu Xufa. A numerical simulation to the deformation of an internally pressured cylinder tank under intensive laser irradiation. Chinese Journal of High Pressure Physics, 1996, 10 (4): 262-268
    [7] 颜怡霞, 陈裕泽, 陈刚, 等. 激光辐照下充内压柱壳动态爆裂的数值模拟[J]. 爆炸与冲击, 2004, 24 (6): 487-492.

    Yan Yixia, Chen Yuze, Chen Gang, et al. Numerical simulation on the failure of internally pressured cylindrical shell under laser irradiation. Explosion and Shock Waves, 2004, 24 (6): 487-492
    [8] 张家雷, 谭福利, 仝延锦. 激光辐照下充压柱壳的破坏能量阈值数值模拟[J]. 强激光与粒子束, 2010, 22 (5): 991-995. http://www.hplpb.com.cn/article/id/4569

    Zhang Jialei, Tan Fuli, Tong Yanjin. Numerical simulation of failure energy threshold of internally pressured cylindrical shell under laser irradiation. High Power Laser and Particle Beams, 2010, 22 (5): 991-995 http://www.hplpb.com.cn/article/id/4569
    [9] 黄晨光, 陈思颖, 段祝平. 激光辐照下充压圆筒变形的相似律问题[J]. 强激光与粒子束, 2004, 16 (8): 962-966. http://www.hplpb.com.cn/article/id/641

    Huang Chenguang, Chen Siying, Duan Zhuping. Similarity criterion about deformation and failure of pressurized cylinder subjected to laser irradiation. High Power Laser and Particle Beams, 2004, 16 (8): 962-966 http://www.hplpb.com.cn/article/id/641
    [10] 李清源. 强激光对飞行器的毁伤效应[M]. 北京: 中国宇航出版社, 2012.

    Li Qingyuan. Damage effects of vehicles irradiated by intense lasers. Beijing: China Astronautic Publishing House, 2012
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  931
  • HTML全文浏览量:  181
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-25
  • 修回日期:  2017-11-06
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回