留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共线双脉冲激光诱导击穿光谱技术检测铝合金中的Cr和Mn

杨瑞兆 苏雪娇 於有利 周卫东

杨瑞兆, 苏雪娇, 於有利, 等. 共线双脉冲激光诱导击穿光谱技术检测铝合金中的Cr和Mn[J]. 强激光与粒子束, 2018, 30: 099001. doi: 10.11884/HPLPB201830.180053
引用本文: 杨瑞兆, 苏雪娇, 於有利, 等. 共线双脉冲激光诱导击穿光谱技术检测铝合金中的Cr和Mn[J]. 强激光与粒子束, 2018, 30: 099001. doi: 10.11884/HPLPB201830.180053
Yang Ruizhao, Su Xuejiao, Yu Youli, et al. Double pulse laser-induced breakdown spectroscopy analysis of trace elements Cr and Mn in aluminum alloy[J]. High Power Laser and Particle Beams, 2018, 30: 099001. doi: 10.11884/HPLPB201830.180053
Citation: Yang Ruizhao, Su Xuejiao, Yu Youli, et al. Double pulse laser-induced breakdown spectroscopy analysis of trace elements Cr and Mn in aluminum alloy[J]. High Power Laser and Particle Beams, 2018, 30: 099001. doi: 10.11884/HPLPB201830.180053

共线双脉冲激光诱导击穿光谱技术检测铝合金中的Cr和Mn

doi: 10.11884/HPLPB201830.180053
基金项目: 

国家自然科学基金项目 61178034

国家自然科学基金项目 51276100

详细信息
    作者简介:

    杨瑞兆(1990-),男,硕士,从事激光诱导击穿光谱技术研究;957462936@qq.com

    通讯作者:

    周卫东(1966-),男,博士,研究员,目前主要从事激光光谱和飞秒激光光刻研究;wdzhou@zjnu.cn

  • 中图分类号: O433

Double pulse laser-induced breakdown spectroscopy analysis of trace elements Cr and Mn in aluminum alloy

  • 摘要: 采用两台波长1064 nm的调Q脉冲Nd ∶YAG激光器和多通道小型光纤光栅光谱仪,建立了一套共线双脉冲激光诱导击穿光谱分析装置。与单脉冲激光诱导技术相比,在最佳双脉冲时间延时8 μs时,Mn I 403.07 nm和Cr I 425.43 nm的光谱强度分别增加了14.3倍和17.2倍,以这两条谱线为分析线,铝合金中Mn和Cr的检测限分别由单脉冲时的73和94.5 μg/g降低至双脉冲时的3.76和4.26 μg/g,检测灵敏度提高了约20倍。
  • 图  1  共线双脉冲激光诱导击穿光谱装置示意图

    Figure  1.  Schematic diagram of DP LIBS system

    图  2  Cr I 425.43 nm & Mn I 403.07 nm谱线强度与双脉冲延时关系图(E=30 mJ+30 mJ)

    Figure  2.  Intensities of Cr I 425.43 nm & Mn I 403.07 nm as a function of inter-pulse delay time. (E=30 mJ+30 mJ)

    图  3  单脉冲(E=60 mJ)和双脉冲(E=30 mJ+30 mJ, td=8 μs) LIBS光谱

    Figure  3.  Spectrum of SP-LIBS and DP-LIBS

    图  4  Cr I 425.43 nm & Mn I 403.07 nm元素的定标曲线

    Figure  4.  The calibration curve for Cr I 425.43 nm and Mn I 403.07 nm

  • [1] DeLucia F C, Samuels A C, Harmon R S, et al. Laser-induced breakdown spectroscopy(LIBS): A promising versatile chemical sensor technology for hazardous material detection[J]. IEEE Sensors Journal, 2005, 5(4): 681-689. doi: 10.1109/JSEN.2005.848151
    [2] Wang Zhe, Yuan Tingbi, Hou Zongyu, et al. Laser-induced breakdown spectroscopy in China[J]. Front Phys, 2014, 9(4): 419-438. doi: 10.1007/s11467-013-0410-0
    [3] Sturm V, Schmitz H U, Reuter T, et al. Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B, 2008, 63(10): 1167-1170. doi: 10.1016/j.sab.2008.08.004
    [4] Goueguel C, Laville S, Vidal F, et al. Resonant laser-induced breakdown spectroscopy for analysis of lead traces in copper alloys[J]. J Anal Atom Spectrom, 2011, 26(12): 2452-2460. doi: 10.1039/c1ja10112a
    [5] Santagata A, Spera D, Albano G, et al. Orthogonal fs/ns double-pulse libs for copper-based-alloy analysis[J]. Applied Physics A: Materials Science and Processing, 2008, 93(4): 929-934. doi: 10.1007/s00339-008-4738-1
    [6] Doucet F R, Belliveau T F, Fortier J L, et al. Use of chemometrics and laser-induced breakdown spectroscopy for quantitative analysis of major and minor elements in aluminum alloys[J]. Applied Spectroscopy, 2007, 61(3): 327-332. doi: 10.1366/000370207780220813
    [7] Inakollu P, Philip T, Rai A K, et al. A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods[J]. Spectrochimica Acta Part B, 2009, 64(1): 99-104. doi: 10.1016/j.sab.2008.11.001
    [8] Li Xiafen, Zhou Weidong, Li Kexue, et al. Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil[J]. Opt Commun, 2012, 285(1): 54-58. doi: 10.1016/j.optcom.2011.08.074
    [9] Li Xiafen, Zhou Weidong, Cui Zhifeng. Temperature and electron density of soil plasma generated by LA-FPDPS[J]. Front Phys, 2012, 7(6): 721-727. doi: 10.1007/s11467-012-0254-z
    [10] Su Xuejiao, Zhou Weidong, Qian Huiguo. Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy[J]. Optics Express, 2014, 22(23): 28437-28442. doi: 10.1364/OE.22.028437
    [11] Su Xuejiao, Zhou Weidong, Qian Huiguo. Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement[J]. Journal of Analytical Atomic Spectrometry, 2014, 29: 2356-2361. doi: 10.1039/C4JA00296B
    [12] Yu Youli, Zhou Weidong, Su Xuejiao. Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy[J]. Optics Communications, 2014, 333: 62-66. doi: 10.1016/j.optcom.2014.07.053
    [13] Song Chao, Gao Xun, Shao Yan. Pre-ablation laser parameter effects on the spectral enhancement of 1064 nm/1064 nm dual-pulse laser induced breakdown spectroscopy[J]. Optik, 2016, 127: 3979-3983. doi: 10.1016/j.ijleo.2016.01.109
    [14] Freedman A, Iannarilli F J, Wormhoudt J C. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B, 2005, 60(7/8): 1076-1082.
    [15] Ismail M A, Cristoforetti G, Legnaioli, S, et al. Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations[J]. Anal Bioanal Chem, 2006, 385(2): 316-325. doi: 10.1007/s00216-006-0363-z
    [16] Mohamed W T Y. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera[J]. Opt Laser Technol, 2008, 40(1): 30-38. doi: 10.1016/j.optlastec.2007.04.004
    [17] Elnasharty I Y, Doucet F R, Gravel J F Y, et al. Double-pulse LIBS combining short and long nanosecond pulses in the microjoule range[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1660-1666. doi: 10.1039/C4JA00099D
    [18] Li Shuo, Liu Lei, Yan Aidong, et al. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy[J]. Rev Sci Instr, 2017, 88: 023109. doi: 10.1063/1.4975597
    [19] 王琦, 董凤忠, 梁云仙, 等. 再加热双脉冲与单脉冲激光诱导Fe等离子体发射光谱实验对比研究[J]. 光学学报, 2011, 31(10): 281-287. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201110051.htm

    Wang Qi, Dong Fengzhong, Liang Yunxian, et al. Experimental comparison investigation on emission spectra of reheating double and single pulses laser-induced Fe plasmas. Acta Optica Sinica, 2011, 31(10): 281-287 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201110051.htm
    [20] Babushok V I, DeLucia Jr F C, Gottfried J L, et al. Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(9): 999-1014. doi: 10.1016/j.sab.2006.09.003
    [21] Colao F, Lazic V, Fantoni R, et al. A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(7): 1167-1179. doi: 10.1016/S0584-8547(02)00058-7
    [22] Chen Fangfang, Su Xuejiao, Zhou Weidong. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy[J]. Front Phys, 2015, 10: 104207. doi: 10.1007/s11467-015-0500-2
    [23] Jedlinszki N, Galbács G. An evaluation of the analytical performance of collinear multi-pulse laser induced breakdown spectroscopy[J]. Microchemical Journal, 2011, 97(2): 255-263. doi: 10.1016/j.microc.2010.09.009
  • 加载中
图(4)
计量
  • 文章访问数:  1096
  • HTML全文浏览量:  230
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-07
  • 修回日期:  2018-05-07
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回