留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

测量离子束横向截面的闪烁体屏的热分析

王小胡 李嘉辉 杨振 龙继东 章林文

王小胡, 李嘉辉, 杨振, 等. 测量离子束横向截面的闪烁体屏的热分析[J]. 强激光与粒子束, 2018, 30: 094001. doi: 10.11884/HPLPB201830.180054
引用本文: 王小胡, 李嘉辉, 杨振, 等. 测量离子束横向截面的闪烁体屏的热分析[J]. 强激光与粒子束, 2018, 30: 094001. doi: 10.11884/HPLPB201830.180054
Wang Xiaohu, Li Jiahui, Yang Zhen, et al. Thermal effect of scintillation screens used for low energy deuterium ion beam profiling[J]. High Power Laser and Particle Beams, 2018, 30: 094001. doi: 10.11884/HPLPB201830.180054
Citation: Wang Xiaohu, Li Jiahui, Yang Zhen, et al. Thermal effect of scintillation screens used for low energy deuterium ion beam profiling[J]. High Power Laser and Particle Beams, 2018, 30: 094001. doi: 10.11884/HPLPB201830.180054

测量离子束横向截面的闪烁体屏的热分析

doi: 10.11884/HPLPB201830.180054
基金项目: 

国家自然科学基金项目 11505147

详细信息
    作者简介:

    王小胡(1981-),男,博士,副研究员,从事核辐射探测技术研究;wxh@swust.edu.cn

  • 中图分类号: TL81

Thermal effect of scintillation screens used for low energy deuterium ion beam profiling

  • 摘要: 针对基于闪烁屏-CCD(电荷耦合元件)相机的氘离子束横向强度分布测量系统,利用ANSYS软件模拟计算了在直流及脉冲模式下,能量100 keV、束斑直径3 mm氘离子轰击造成的Al2O3, SiO2以及锗酸铋(BGO)三种候选闪烁体材料的表面温度变化。结果表明,在30 μA的直流氘离子束轰击下,闪烁体表面温度随辐照时间急剧地升高。持续时间10 min的氘离子束轰击将使三种材料前表面的温度分别升高131,234和649 ℃。对于峰值流强30 μA、重复频率1 Hz、脉宽5 μs的重复频率脉冲氘离子束,每个脉冲引起的三种闪烁屏表面的温度升高均小于0.05 ℃,且长时间的离子辐照基本不会造成闪烁屏的表面温度有明显的升高。对于脉宽5 μs的单脉冲氘离子束,三种材料的表面温度均随离子流强近似呈线性地增加。在单脉冲模式下,Al2O3,SiO2以及BGO闪烁屏能允许的最高离子流强分别为2.32,1.08和0.72 A,超过此流强其表面温度将达到熔点。
  • 图  1  模型建立

    Figure  1.  Model established for measurement

    图  2  600 s内30 μA时闪烁体表面中心处的温度变化曲线

    Figure  2.  Temperature change at the center of the surfaces of the scintillators in 600 s at 30 μA

    图  3  离子辐照600 s后的温度场分布

    Figure  3.  Temperature field nephograms after 600 s of ion itradiation

    图  4  表面径向温度分布曲线

    Figure  4.  Surface radial temperature distribution curves

    图  5  中心位置轴向温度分布曲线

    Figure  5.  Axial temperature distribution curves at center position

    图  6  30 s内闪烁体表面中心处的温度变化曲线

    Figure  6.  Temperature change at the center of the surfaces of the scintillators in 30 s

    图  7  闪烁屏体表面中心处的温度随离子流强的变化曲线

    Figure  7.  Temperature change of the surfaces of the scintillators as a function of ion current

    表  1  闪烁体的热物理性能参数(20 ℃)

    Table  1.   The thermal physical properties of scintillator (20 ℃)

    material thermal conductivity/(W·m-1·℃-1) specific heat/(J·kg-1·℃-1) density/(kg·m- 3) melting point/℃
    Al2O3 29.2 881.7 3970 2045
    BGO 2.6 305 7130 1050
    SiO2 11.7 744 2650 1710
    stainless steel 16 500 7930 1400
    下载: 导出CSV
  • [1] 肖坤祥, 周明贵. 小型石油测井中子发生器[J]. 石油管材与仪器, 2004, 18(4): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYQ200404002.htm

    Xiao Kunxiang, Zhou Minggui. Small oil well logging neutron generator. Oil Instrument, 2004, 18(4): 7-9 https://www.cnki.com.cn/Article/CJFDTOTAL-SYYQ200404002.htm
    [2] 王刚, 于前锋, 王文, 等. 氘氚聚变中子发生器旋转氚靶传热特性研究[J]. 物理学报, 2015, 64: 102901. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201510011.htm

    Wang Gang, Yu Qianfeng, Wang Wen, et al. Heat transfer analysis of rotating tritium target of deuterium-tritium fusion neutron generator. Acta Physica Sinica, 2015, 64: 102901 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201510011.htm
    [3] 彭宇飞, 蓝朝晖, 王小胡, 等. 基于闪烁体的强流低能脉冲离子束的时间-空间分辨探测[J]. 高能量密度物理, 2012(1): 21-25.

    Peng Yufei, Lan Zhaohui, Wang Xiaohu, et al. Time and space resolution detection of the high current low energy pulsed ion beam based on scintillation screens. High Energy Density Physics, 2012(1): 21-25
    [4] 王小胡, 杨振, 李杰, 等. 基于Al2O3单晶闪烁屏和CCD相机的脉冲离子束束流截面测量[J]. 现代应用物理, 2017, 8: 010203. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201701003.htm

    Wang Xiaohu, Yang Zhen, Li Jie, et al. Measurement of pulsed ion beam cross section based on Al2O3 single crystal scintillation screen and CCD camera. Modern Applied Physics, 2017, 8: 010203 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201701003.htm
    [5] 李培俊. 无机闪烁晶体及其应用[J]. 无机材料学报, 1993, 8(4): 385-398. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL199304000.htm

    Li Peijun. Inorganic scintillation crystal and its application. Journal of Inorganic Materials, 1993, 8(4): 385-398 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL199304000.htm
    [6] 黄显太. 无机闪烁体的发展和国内现状[J]. 核电子学与探测技术, 1993, 13(2): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE199302006.htm

    Huang Xiantai. Recent development of inorganic scintillators. Nuclear Electronics & Detection Technology, 1993, 13(2): 98-104 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE199302006.htm
    [7] 吴永康. 工业核仪器应用中的闪烁探测器[J]. 核电子学与探测技术, 2001, 21(5): 413-415. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200105023.htm

    Wu Yongkang. Scintillation detectors used in industry nuclear instruments. Nuclear Electronics & Detection Technology, 2001, 21(5): 413-415 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200105023.htm
    [8] 汪婧, 陈伯显, 庄人遴. 无机闪烁探测器综述[J]. 核电子学与探测技术, 2006, 26(6): 1039-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200606092.htm

    Wang Jing, Chen Boxian, Zhuang Renlin. Inorganic scintillation detectors. Nuclear Electronics & Detection Technology, 2006, 26(6): 1039-1045 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200606092.htm
    [9] 北京核仪器厂温度效应测量组. 闪烁体的温度效应[J]. 核电子学与探测技术, 1984, 4(3): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE198403003.htm

    Temperature Effect Survey Group of Beijing Nuclear Instrument Plant. On the temperature effect of scintillators. Nuclear Electronics & Detection Technology, 1984, 4(3): 143-147 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE198403003.htm
    [10] 罗凤群, 汲长松. 闪烁体部分性能的测试方法[J]. 核电子学与探测技术, 1998, 18(3): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE803.006.htm

    Luo Fengqun, Ji Changsong. Measurement methods for several properties of scintillator. Nuclear Electronics & Detection Technology, 1998, 18(3): 28-32 https://www.cnki.com.cn/Article/CJFDTOTAL-HERE803.006.htm
    [11] 丁洪林. 核辐射探测器[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009: 109.

    Ding Honglin. Nuclear radiation detectors. Harbin: Harbin Engineering University Press, 2009: 109
    [12] 郁岚. 热工基础及流体力学[M]. 北京: 中国电力出版社, 2014: 196-197.

    Yu Lan. Thermal engineering and fluid mechanics. Beijing: China Electric Power Press, 2014: 196-197
    [13] 王韬, 张开志, 李勤, 等. PET回旋加速器内部束流测量探头热分析[J]. 强激光与粒子束, 2011, 23(5): 1346-1350. http://www.hplpb.com.cn/article/id/5200

    Wang Tao, Zhang Kaizhi, Li Qin, et al. Thermal analysis of interior beam probes for PET cyclotron. High Power Laser and Particle Beams, 2011, 23(5): 1346-1350 http://www.hplpb.com.cn/article/id/5200
    [14] 沈定中, 任国浩. 无机闪烁晶体的研究现状与应用前景(上)[J]. 上海化工, 1998, 23(21): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHG199821006.htm

    Shen Dingzhong, Ren Guohao. Progress and prospects in the development of inorganic scintillation crystals (part one). Shanghai Chemical Industry, 1998, 23(21): 24-27 https://www.cnki.com.cn/Article/CJFDTOTAL-SHHG199821006.htm
    [15] 沈定中, 任国浩. 无机闪烁晶体的研究现状与应用前景(下)[J]. 上海化工, 1998, 23(22): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHG199822004.htm

    Shen Dingzhong, Ren Guohao. Progress and prospects in the development of inorganic scintillation crystals (part two). Shanghai Chemical Industry, 1998, 23(22): 25-28 https://www.cnki.com.cn/Article/CJFDTOTAL-SHHG199822004.htm
    [16] 孟祥艳, 刘运传, 周燕萍, 等. 微热量热法测定纤维及树脂基复合材料的比热容[J]. 兵工学报, 2015, 36(10): 1962-1966. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201510019.htm

    Meng Xiangyan, Liu Yunchuan, Zhou Yanping, et al. Determination of specific heat capacity of fiber and resin matrix composites by micro-calorimeter. Acta Armamentarii, 2015, 36 (10): 1962-1966 https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201510019.htm
    [17] 刘立娜. 闪光法测定氧化铝陶瓷导热系数的不确定度评定[J]. 工业计量, 2013, 23(6): 50-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJL201306017.htm

    Liu Li'na. Evaluation of uncertainty of thermal conductivity of alumina ceramics by flash method. Industrial Measurement, 2013, 23 (6): 50-51 https://www.cnki.com.cn/Article/CJFDTOTAL-GYJL201306017.htm
    [18] 费扬, 奚同庚, 蔡忠龙, 等. 锗酸铋(Bi4Ge3O12)单晶热物理性质的研究[J]. 无机材料学报, 1989, 4(4): 357-361. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL198904009.htm

    Fei Yang, Xi Tonggeng, Cai Zhonglong, et al. A Study on thermophsical properties of bismuth germanate. Journal of Inorganic Materials, 1989, 4(4): 357-361 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL198904009.htm
    [19] 曹西征. BGO晶体探头的温度特性研究[D]. 长春: 东北师范大学, 2004.

    Cao Xizheng. Study on temperature characteristics of BGO crystal probe. Changchun: Northeast Normal University, 2004
    [20] 周芳娟. 304不锈钢切削加工表面特性的研究[D]. 武汉: 华中科技大学, 2014.

    Zhou Fangjuan. Research on machined surface characteristics of 304 stainless steel. Wuhan: Huazhong University of Science and Technology, 2014
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1034
  • HTML全文浏览量:  195
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-07
  • 修回日期:  2018-05-16
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回