留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于D-dot传感器的弓网离线放电瞬态电场时域测试方法

李智宇 李昊 曹鹤飞 金梦哲 胡曼

李智宇, 李昊, 曹鹤飞, 等. 基于D-dot传感器的弓网离线放电瞬态电场时域测试方法[J]. 强激光与粒子束, 2022, 34: 123001. doi: 10.11884/HPLPB202234.220172
引用本文: 李智宇, 李昊, 曹鹤飞, 等. 基于D-dot传感器的弓网离线放电瞬态电场时域测试方法[J]. 强激光与粒子束, 2022, 34: 123001. doi: 10.11884/HPLPB202234.220172
Li Zhiyu, Li Hao, Cao Hefei, et al. Time-domain measurement of the transient electric field caused by pantograph-catenary off-line discharge based on D-dot Sensor[J]. High Power Laser and Particle Beams, 2022, 34: 123001. doi: 10.11884/HPLPB202234.220172
Citation: Li Zhiyu, Li Hao, Cao Hefei, et al. Time-domain measurement of the transient electric field caused by pantograph-catenary off-line discharge based on D-dot Sensor[J]. High Power Laser and Particle Beams, 2022, 34: 123001. doi: 10.11884/HPLPB202234.220172

基于D-dot传感器的弓网离线放电瞬态电场时域测试方法

doi: 10.11884/HPLPB202234.220172
基金项目: 轨道交通电磁环境效应研究与测试平台建设项目;国家自然科学基金项目(51807123)
详细信息
    作者简介:

    李智宇,lizhiyu@crscd.com.cn

  • 中图分类号: TN98

Time-domain measurement of the transient electric field caused by pantograph-catenary off-line discharge based on D-dot Sensor

  • 摘要: 弓网离线放电电磁辐射具有瞬态、宽频带的特性,可使用D-dot传感器对其进行时域瞬态电场测量,但在对传感器所测微分信号积分还原时,存在信号恢复失真问题严重。搭建了包含脉冲电场发生装置和测量装置的瞬态电场时域波形还原系统,开展了基于D-dot传感器的去直流、数值积分、消除趋势项以及系统辨识低频补偿在内的瞬态电场时域波形测试方法的研究,利用该方法测试了不同电压下弓网离线放电电磁辐射的电场时域波形。理论与实验结果表明:本文所提出的方法能准确、稳定地还原弓网离线放电所辐射瞬态电场的原始时域波形,还原信号与实测微分信号的主要频率分量均在7.5 MHz,二者的相关系数达到93%以上。
  • 图  1  瞬态电场波形还原系统结构示意图

    Figure  1.  Schematic diagram of the structure of the transient electric field waveform restoration system

    图  2  瞬态电场波形还原流程图

    Figure  2.  Waveform reduction process

    图  3  瞬态电场波形还原系统实物图

    Figure  3.  The transient electric field waveform restoration system

    图  4  方波源电场信号及D-dot输出微分信号

    Figure  4.  Square wave source electric field signal and D-dot output differential signal

    图  5  去直流后的电磁脉冲微分测量信号直接积分结果

    Figure  5.  Direct integration result of the electromagnetic pulse differential measurement signal after de-averaging

    图  6  三种方法消除趋势项结果图

    Figure  6.  Result of three methods to remove trend item

    图  7  低频补偿辨识系统的输入信号与输出信号

    Figure  7.  Input signal and output signal of low frequency compensation identification system

    图  8  直接积分信号与低频补偿后积分信号对比

    Figure  8.  Comparison of direct integration and compensation after integration

    图  9  修正系数标定前后的瞬态电场波形还原信号

    Figure  9.  Transient electric field waveform restoration signal before and after correction factor calibration

    图  10  方波信号还原前后的上升沿部分

    Figure  10.  Rising edge of square wave signal before and after reduction

    图  11  两种瞬态电场波形还原方法的结果对比

    Figure  11.  Results comparison of two transient electric field waveform restoration methods

    图  12  弓网离线电弧电场测试系统

    Figure  12.  Off-line arc electric field test system of pantograph

    图  13  D-dot传感器输出微分信号及信号频谱图

    Figure  13.  D-dot sensor output differential signal and its amplitude spectrum

    图  14  瞬态电场波形还原系统还原电场信号及信号频谱图

    Figure  14.  Transient electric field waveform restoration system restored electric field signal and its amplitude spectrum

    图  15  不同激励电压下的瞬态电场还原信号

    Figure  15.  Transient electric field restoration signals under different excitation voltages

    表  1  三种方法消除趋势项结果的均方根误差及相关系数

    Table  1.   Three methods to eliminate root mean square error and correlation coefficient of trend term results

    methodRMSEcorrelation coefficient/%
    least squares0.42063.71
    wavelet0.19384.14
    EMD0.37072.33
    下载: 导出CSV

    表  2  低频补偿前后信号的均方根误差及相关系数

    Table  2.   Root mean square error and correlation coefficient of the signal before and after low frequency compensation

    stateRMSEcorrelation coefficient/%
    before compensation0.04182.39
    after compensation0.08394.77
    下载: 导出CSV

    表  3  不同激励电压下瞬态电场还原信号的相关系数

    Table  3.   Correlation coefficients of transient electric field restoration signals under different excitation voltages

    applied voltage/kVcorrelation coefficient/%
    1593.19
    2094.96
    2593.11
    下载: 导出CSV
  • [1] 高国强, 郝静, 古圳, 等. 高速铁路中受电弓升弓过程弓网电弧电气特性[J]. 高电压技术, 2016, 42(11):3569-3575

    Gao Guoqiang, Hao Jing, Gu Zhen, et al. Electrical characteristics on pantograph-catenary arc during pantograph rising in high speed railway[J]. High Voltage Engineering, 2016, 42(11): 3569-3575
    [2] Zhou Hongyi, Duan Fuchun, Liu Zhigang, et al. Study on electric spark discharge between pantograph and catenary in electrified railway[J]. IET Electrical Systems in Transportation, 2022, 12(2): 128-142. doi: 10.1049/els2.12043
    [3] 刘卫东, 胡小锋. 瞬态电场时域测试技术的研究现状与展望[J]. 高压电器, 2014, 50(7):132-138

    Liu Weidong, Hu Xiaofeng. Review of transient electric field measurement in time domain[J]. High Voltage Apparatus, 2014, 50(7): 132-138
    [4] 陈锦, 刘小龙, 燕有杰, 等. 小型短电磁脉冲传感器[J]. 强激光与粒子束, 2012, 24(12):2797-2801 doi: 10.3788/HPLPB20122412.2797

    Chen Jin, Liu Xiaolong, Yan Youjie, et al. Compact short electromagenetic pulse sensor[J]. High Power Laser and Particle Beams, 2012, 24(12): 2797-2801 doi: 10.3788/HPLPB20122412.2797
    [5] Keller C, Feser K. Fast emission measurement in time domain[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(4): 816-824. doi: 10.1109/TEMC.2007.908282
    [6] 胡蔚中, 杜衡. 一种具有频率自适应能力的高精度数字积分算法[J]. 电力科学与工程, 2017, 33(2):1-8 doi: 10.3969/j.ISSN.1672-0792.2017.02.001

    Hu Weizhong, Du Heng. A high precision digital integrator algorithm with frequency self-adaption ability[J]. Electric Power Science and Engineering, 2017, 33(2): 1-8 doi: 10.3969/j.ISSN.1672-0792.2017.02.001
    [7] 李振华, 胡蔚中, 闫苏红, 等. 基于龙贝格算法的高精度数字积分算法[J]. 电力系统自动化, 2016, 40(16):138-142

    Li Zhenhua, Hu Weizhong, Yan Suhong, et al. High precision algorithm of digital integrator based on Romberg algorithm[J]. Automation of Electric Power Systems, 2016, 40(16): 138-142
    [8] 刘福才, 吴晨, 何锁纯. 数字积分器在脉冲电流检测中的应用[J]. 仪表技术与传感器, 2012(10):85-87,90 doi: 10.3969/j.issn.1002-1841.2012.10.028

    Liu Fucai, Wu Chen, He Suochun. Pulse current measurement based on digital integrator[J]. Instrument Technique and Sensor, 2012(10): 85-87,90 doi: 10.3969/j.issn.1002-1841.2012.10.028
    [9] 朱长青. 脉冲电场微型传感探头的研制[J]. 高电压技术, 2009, 35(8):1940-1945

    Zhu Changqing. Development of a mini-probe for testing pulsed e-field[J]. High Voltage Engineering, 2009, 35(8): 1940-1945
    [10] 卫兵, 顾元朝, 周荣国, 等. 阳加速器水传输线D-dot的设计、标定和实验[J]. 强激光与粒子束, 2007, 19(5):830-834

    Wei Bing, Gu Yuanchao, Zhou Rongguo, et al. Design, calibration and measurement of D-dot monitor for Yang accelerator water transmission line[J]. High Power Laser and Particle Beams, 2007, 19(5): 830-834
    [11] 王启武, 李炎新, 石立华. 纳秒电磁脉冲测量用D-dot探头设计及实验[J]. 强激光与粒子束, 2015, 27:115004 doi: 10.11884/HPLPB201527.115004

    Wang Qiwu, Li Yanxin, Shi Lihua. Design and experiment of D-dot probe for nanosecond electromagnetic pulse measurement[J]. High Power Laser and Particle Beams, 2015, 27: 115004 doi: 10.11884/HPLPB201527.115004
    [12] 齐路, 张国钢, 刘竞存, 等. 电磁脉冲D-dot电场传感器的设计与优化[J]. 高压电器, 2018, 54(7):237-241,247

    Qi Lu, Zhang Guogang, Liu Jingcun, et al. Design and optimization of d-dot e-field sensor for electromagnetic pulse detection[J]. High Voltage Apparatus, 2018, 54(7): 237-241,247
    [13] 刘波, 文忠, 曾涯. MATLAB信号处理[M]. 北京: 电子工业出版社, 2006

    Liu Bo, Wen Zhong, Zeng Ya. MATLAB signal processing[M]. Beijing: Publishing House of Electronics Industry, 2006
    [14] 赵墨, 马良, 吴伟, 等. 差分型脉冲电场测量系统的研制[J]. 核电子学与探测技术, 2012, 32(10):1148-1152 doi: 10.3969/j.issn.0258-0934.2012.10.009

    Zhao Mo, Ma Liang, Wu Wei, et al. The develop of pulsed E-field sensor based on differential measurement[J]. Nuclear Electronics & Detection Technology, 2012, 32(10): 1148-1152 doi: 10.3969/j.issn.0258-0934.2012.10.009
    [15] 王广斌, 刘义伦, 金晓宏, 等. 基于最小二乘原理的趋势项处理及其MATLAB的实现[J]. 有色设备, 2005(5):4-8 doi: 10.3969/j.issn.1003-8884.2005.05.002

    Wang Guangbin, Liu Yilun, Jin Xiaohong, et al. Treatment of tendency part and its MATLAB accomplishment based on least-square principle[J]. Nonferrous Metallurgical Equipment, 2005(5): 4-8 doi: 10.3969/j.issn.1003-8884.2005.05.002
    [16] 张美凤. 测试系统的低频特性补偿研究[J]. 科技信息, 2007(36):776-777

    Zhang Meifeng. Research on low frequency characteristic compensation of measuring system[J]. Science & Technology Information, 2007(36): 776-777
    [17] 谭坚文, 石立华. 脉冲电流探头的时域标定研究[J]. 强激光与粒子束, 2006, 18(2):337-340

    Tan Jianwen, Shi Lihua. Time domain calibration of pulsed current probe[J]. High Power Laser and Particle Beams, 2006, 18(2): 337-340
    [18] 张虚怀, 杜汇良, 马春生. 返回舱着水的数值模拟及冲击特性分析[J]. 清华大学学报(自然科学版), 2010, 50(8):1297-1301

    Zhang Xuhuai, Du Huiliang, Ma Chunsheng. Water impact simulations and analyses of space capsule response characteristics[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(8): 1297-1301
    [19] 谢宇超, 周海滨, 陶妍, 等. 基于小波分解的水中电爆炸冲击波波形重建方法研究[J]. 振动与冲击, 2021, 40(5):149-153,178 doi: 10.13465/j.cnki.jvs.2021.05.020

    Xie Yuchao, Zhou Haibin, Tao Yan, et al. Reconstruction method of shock wave shape of underwater electric explosion based on wavelet decomposition[J]. Journal of Vibration and Shock, 2021, 40(5): 149-153,178 doi: 10.13465/j.cnki.jvs.2021.05.020
    [20] 陈为真, 汪秉文, 胡晓娅. 基于时域积分的加速度信号处理[J]. 华中科技大学学报(自然科学版), 2010, 38(1):1-4 doi: 10.13245/j.hust.2010.01.015

    Chen Weizhen, Wang Bingwen, Hu Xiaoya. Acceleration signal processing by aumerical integration[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(1): 1-4 doi: 10.13245/j.hust.2010.01.015
    [21] 杨文杰, 张志杰, 李岩峰, 等. QR分解与GLS改进算法在压力传感器动态性能改善中的应用[J]. 传感技术学报, 2016, 29(11):1698-1704 doi: 10.3969/j.issn.1004-1699.2016.11.012

    Yang Wenjie, Zhang Zhijie, Li Yanfeng, et al. The application of QR decomposition and GLS improved algorithm in improving the dynamic performance of pressure sensor[J]. Chinese Journal of Sensors and Actuators, 2016, 29(11): 1698-1704 doi: 10.3969/j.issn.1004-1699.2016.11.012
    [22] Papamarkos N, Chamzas C. A new approach for the design of digital integrators[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1996, 43(9): 785-791. doi: 10.1109/81.536749
    [23] Ouyang Hongzhi, Yao Xueling, Chen Jingliang. Development of a transient magnetic field sensor based on digital integration and frequency equalization[J]. Sensors, 2021, 21: 4268. doi: 10.3390/s21134268
    [24] Mete S, Ozer S, Zorlu H. System identification using Hammerstein model optimized with differential evolution algorithm[J]. AEU-International Journal of Electronics and Communications, 2016, 70(12): 1667-1675.
    [25] 王可, 段艳涛, 李炎新, 等. 基于输出误差模型的B-dot传感器标定方法[J]. 强激光与粒子束, 2019, 31:103214 doi: 10.11884/HPLPB201931.190244

    Wang Ke, Duan Yantao, Li Yanxin, et al. Calibration method of B-dot sensors based on OE model[J]. High Power Laser and Particle Beams, 2019, 31: 103214 doi: 10.11884/HPLPB201931.190244
    [26] Wang Ke, Duan Yantao, Shi Lihua, et al. Laboratory calibration of D-dot sensor based on system identification method[J]. Sensors, 2019, 19: 3255. doi: 10.3390/s19153255
    [27] Wang Jingang, Yan Xiaojun, Zhong Lu, et al. Simulation and test of a contactless voltage measurement method for overhead lines based on reconstruction of integral node parameters[J]. Sensors, 2019, 20: 246. doi: 10.3390/s20010246
    [28] Lagnese J, McKnight R H. Calculation of confidence intervals for high-voltage impulse reconstruction[J]. IEEE Transactions on Instrumentation and Measurement, 1988, 37(2): 201-206. doi: 10.1109/19.6052
    [29] Huiskamp T, Beckers F J C M, Van Heesch E J M, et al. B-dot and D-dot sensors for (sub) nanosecond high-voltage and high-current pulse measurements[J]. IEEE Sensors Journal, 2016, 16(10): 3792-3801. doi: 10.1109/JSEN.2016.2530841
    [30] Jiang Yunsheng, Xu Zhiqian, Wu Ping, et al. A time-domain calibration method for transient EM field sensors[J]. Measurement, 2021, 168: 108368. doi: 10.1016/j.measurement.2020.108368
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  701
  • HTML全文浏览量:  266
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-05
  • 修回日期:  2022-08-30
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回