留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectrum measurements for picosecond laser produced X-ray sources

Zhang Qiangqiang Yu Minghai Wei Lai Yang Zuhua Chen Yong Fan Quanping

张强强, 于明海, 魏来, 等. 皮秒脉冲激光产生的X射线源能谱精密诊断[J]. 强激光与粒子束, 2022, 34: 122004. doi: 10.11884/HPLPB202234.220327
引用本文: 张强强, 于明海, 魏来, 等. 皮秒脉冲激光产生的X射线源能谱精密诊断[J]. 强激光与粒子束, 2022, 34: 122004. doi: 10.11884/HPLPB202234.220327
Zhang Qiangqiang, Yu Minghai, Wei Lai, et al. Spectrum measurements for picosecond laser produced X-ray sources[J]. High Power Laser and Particle Beams, 2022, 34: 122004. doi: 10.11884/HPLPB202234.220327
Citation: Zhang Qiangqiang, Yu Minghai, Wei Lai, et al. Spectrum measurements for picosecond laser produced X-ray sources[J]. High Power Laser and Particle Beams, 2022, 34: 122004. doi: 10.11884/HPLPB202234.220327

皮秒脉冲激光产生的X射线源能谱精密诊断

doi: 10.11884/HPLPB202234.220327
详细信息
  • 中图分类号: O434.13

Spectrum measurements for picosecond laser produced X-ray sources

Funds: supported by National Natural Science Foundation of China ( 011905201, 011905200)
More Information
  • 摘要:

    针对皮秒脉冲激光产生的X射线能谱精密诊断需求,提出了一种晶体谱仪,该谱仪使用曲率为200 mm的透射式石英弯晶作为色散元件,测谱范围可覆盖8~60 keV。使用该谱仪在星光III和神光II升级装置进行了应用,成功获得了铜、钼、银等元素的特征线能谱,以及金的L壳层特征线,测量获得的能谱信噪比较高,显示了谱仪在测量皮秒激光产生的X射线能谱上的良好性能。

  • Figure  1.  Configuration of the transmission curved crystal spectrometer

    Figure  2.  Typical spectral image acquired from the molybdenum anode X-ray tube

    Figure  3.  Molybdenum spectra summed over the spectral image

    Figure  4.  Typical line spectra from high-Z materials

    Figure  5.  Obtained L-shell emission spectroscopy of Au using the transmission curved crystal spectrometers

    Table  1.   Energies of the observed line emissions

    target materiallinestheoretical energy/keVmeasured energy/keV
    CuKα18.04788.048
    Kβ18.9053
    He-like 2p3P18.34708.332
    He-like 2p1P18.39208.375
    H-like 2p1/28.66608.667
    H-like 2p3/28.6990
    9.716
    9.822
    MoKα117.479317.480
    Kα217.3743
    Kβ119.608319.680
    AgKα122.162922.170
    Kα221.990322.010
    Kβ124.942424.950
    ZrKα115.775115.770
    Kα215.690915.690
    Kβ117.667817.630
    下载: 导出CSV
  • [1] Cao Leifeng, Yang Zuhua, Chen Jihui, et al. Conceptual design of soft X-ray online calibration system for ICF[J]. High Power Laser and Particle Beams, 2020, 32: 112007.
    [2] Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112002.
    [3] Yang Zuhua, Zhou Weimin, Li Pengfei, et al. Optical simulation software X-LAB and its applications[J]. High Power Laser and Particle Beams, 2018, 30: 112002.
    [4] Yan Ji, Zheng Jianhua, Huang Tianxuan, et al. High-energy X-ray backlight research based on Shenguang Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2013, 25(12): 3127-3130. doi: 10.3788/HPLPB20132512.3127
    [5] Zhou Weimin, Yu Minghai, Zhang Tiankui, et al. High-resolution X-ray backlight radiography using picosecond petawatt laser[J]. Chinese Journal of Lasers, 2020, 47: 0500010. doi: 10.3788/CJL202047.0500010
    [6] Zhu Tuo, Zhang Wenhai, Yang Jiamin, et al. Calibration and modeling of X-ray CCD[J]. High Power Laser and Particle Beams, 2011, 23(10): 2663-2667. doi: 10.3788/HPLPB20112310.2663
    [7] Maddox B R, Park H S, Remington B A, et al. Absolute measurements of X-ray backlighter sources at energies above 10keV[J]. Physics of Plasmas, 2011, 18: 056709. doi: 10.1063/1.3582134
    [8] Zhang Z, Nishimura H, Namimoto T, et al. Quantitative measurement of hard X-ray spectra from laser-driven fast ignition plasma[J]. High Energy Density Physics, 2013, 9(3): 435-438. doi: 10.1016/j.hedp.2013.04.001
    [9] Seely J F, Szabo C I, Audebert P, et al. Hard X-ray spectroscopy of inner-shell K transitions generated by MeV electron propagation from intense picosecond laser focal spots[J]. High Energy Density Physics, 2009, 5(4): 263-269. doi: 10.1016/j.hedp.2009.04.012
    [10] Sun Ao, Shang Wanli, Yang Guohong, et al. Study on X-ray line emission diffraction in inertial confinement fusion and its recent progress[J]. High Power Laser and Particle Beams, 2020, 32: 112008.
    [11] Chen C D, King J A, Key M H, at al. A bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeter[J]. Review of Scientific Instruments, 2008, 79: 10E305. doi: 10.1063/1.2964231
    [12] Thfoin I, Reverdin C, Hulin S, et al. Monte-Carlo simulation of noise in hard X-ray transmission crystal spectrometers: identification of contributors to the background noise and shielding optimization[J]. Review of Scientific Instruments, 2014, 85: 11D615. doi: 10.1063/1.4890534
    [13] Williams G J, Maddox B R, Chen Hui, et al. Calibration and equivalency analysis of image plate scanners[J]. Review of Scientific Instruments, 2014, 85: 11E604. doi: 10.1063/1.4886390
    [14] Maddox B R, Park H S, Remington B A, et al. High-energy X-ray backlighter spectrum measurements using calibrated image plates[J]. Review of Scientific Instruments, 2011, 82: 023111. doi: 10.1063/1.3531979
    [15] Zhu Qihua, Zhou Kainan, Su Jingqin, et al. The Xingguang-III laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 2018, 15: 015301. doi: 10.1088/1612-202X/aa94e9
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  183
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 修回日期:  2022-10-23
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回