留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌入硬泡沫层和靶丸的Z箍缩动态黑腔动力学行为及其辐射场模拟研究

宁成 黄炜昊 薛创 文武

宁成, 黄炜昊, 薛创, 等. 嵌入硬泡沫层和靶丸的Z箍缩动态黑腔动力学行为及其辐射场模拟研究[J]. 强激光与粒子束, 2023, 35: 082004. doi: 10.11884/HPLPB202335.230133
引用本文: 宁成, 黄炜昊, 薛创, 等. 嵌入硬泡沫层和靶丸的Z箍缩动态黑腔动力学行为及其辐射场模拟研究[J]. 强激光与粒子束, 2023, 35: 082004. doi: 10.11884/HPLPB202335.230133
Ning Cheng, Huang Weihao, Xue Chuang, et al. Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule[J]. High Power Laser and Particle Beams, 2023, 35: 082004. doi: 10.11884/HPLPB202335.230133
Citation: Ning Cheng, Huang Weihao, Xue Chuang, et al. Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule[J]. High Power Laser and Particle Beams, 2023, 35: 082004. doi: 10.11884/HPLPB202335.230133

嵌入硬泡沫层和靶丸的Z箍缩动态黑腔动力学行为及其辐射场模拟研究

doi: 10.11884/HPLPB202335.230133
基金项目: 国家自然科学基金重点项目(11135007);国家自然科学基金目面上项目(11675025)
详细信息
    作者简介:

    宁 成,ning_cheng@iapcm.ac.cn

  • 中图分类号: TL61

Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule

  • 摘要: 利用自行开发的二维辐射磁流体力学程序,模拟研究在软泡沫柱外嵌套硬泡沫层、中心嵌套结构靶丸的动态黑腔整体动力学行为和热力学性能,以发现硬泡沫层对动态黑腔辐射场的影响和调制作用,以及腔靶耦合相互作用规律。对峰值50 MA、全上升时间300 ns的驱动电流,模拟结果的比较分析表明,嵌套硬泡沫层后靶丸感受到的辐射场温度开始升高时刻延后,辐射均匀更迅速,辐射温度第一峰下降,变化更顺滑,黑腔存在时间变长,达到10 ns以上,后期辐射温度大于350 eV,波形与美国靶丸点火成功实验中的黑腔辐射温度变化曲线比较接近;与没有靶丸的动态黑腔的相同区域辐射温度相比较,嵌入靶丸后,靶丸在烧蚀后期感受到的辐射驱动温度增加。故嵌套硬泡沫层和腔靶耦合都有益于聚变靶丸的烧蚀内爆。
  • 图  1  嵌套有硬泡沫层和靶丸的动态黑腔结构示意图

    Figure  1.  Used model configuration of dynamic hohlraum with a hard foam (CH) layer outside the soft foam column and an embedded capsule in the center

    图  2  无靶丸情况下动态黑腔内爆流线和径向X光辐射功率随时间的变化

    Figure  2.  Trajectories of imploding plasma of dynamic hohlraum and X-ray power without a capsule in the center. The red lines, black lines, blue lines, and the green lines depict the W plasma, the hard foam layer, the soft foam, and the variation of X-ray power, respectively

    图  3  无靶丸情况下动态黑腔内爆过程中各物质层的动能随时间变化

    Figure  3.  Time variations of kinetic energy of imploding plasmas in dynamic hohlraum without a capsule in the center

    图  4  无靶丸情况下动态黑腔内爆过程中总动能随时间的变化

    Figure  4.  Time variation of total kinetic energy of imploding plasmas in dynamic hohlraum without a capsule in the center

    图  5  无靶丸情况下动态黑腔内爆过程中全域平均物质温度和平均辐射温度随时间的变化

    Figure  5.  Time variations of averaged matter and radiation temperatures in dynamic hohlraum without a capsule in the center

    图  6  无靶丸情况下,距中心0.3 cm,与中心连线与z轴成45°,60°,90° 的三个软泡沫物质点的密度和辐射温度随动态黑腔内爆形成过程的变化

    Figure  6.  Time variations of mass density and radiation temperature of three mass points, which are located in a circle of radius 0.3 cm with angles of 45°,60°,90° from z-axis, in soft foam (CH) without a capsule in the center

    图  7  有靶丸、无硬泡沫层情况下,(a) 动态黑腔内爆流线和径向X光辐射功率随时间的变化,其中红色线为钨等离子体,青色线为软泡沫柱,品红色线为铍层,蓝色线为靶丸内层泡沫,以及绿色线为X光辐射功率; (b) 动态黑腔内爆过程中全域平均物质温度和平均辐射温度随时间的变化

    Figure  7.  Data of the dynamic hohlraum with a capsule but without a hard foam (CH) layer. (a) Imploding plasma trajectories and X-ray power. In figure (a), the red lines, cyan lines, fuchsine lines, blue lines, and the green lines depict the W plasma, the soft foam, the Be layer, the foam inside the capsule, and the variation of X-ray power, respectively. (b) Time variations of averaged matter and radiation temperatures over the whole simulation domain

    图  8  有靶丸、无硬泡沫层情况下,动态黑腔内爆形成过程中各层等离子体动能和总动能随时间的变化

    Figure  8.  Time variations of the kinetic energies of all imploding plasma shells and total kinetic energy in the dynamic hohlraum with a capsule but without a hard foam (CH) layer

    图  9  有靶丸、无硬泡沫层情况下,半径为0.3 cm的靶丸表面上,三个铍物质点(它们的半径方向与z轴分别成30°,60°和90°)的密度和辐射温度随动态黑腔内爆形成过程的变化

    Figure  9.  In the dynamic hohlraum with a capsule but without a hard foam (CH) layer, the time variations of Be mass density and radiation temperature of the three mass points, which are located in a circle of radius 0.3 cm with angles of 30°,60°,and 90° from z-axis

    图  10  有靶丸和硬泡沫层情况下,动态黑腔内爆流线和径向X光辐射功率随时间的变化及动态黑腔内爆过程中总动能随时间的变化

    Figure  10.  Data of the dynamic hohlraum with a capsule and a hard foam (CH) layer. (a) The imploding plasma trajectories and X-ray power. In figure (a), the red lines, black lines, cyan lines, fuchsine lines, blue lines, and the green line depict the W plasma, the hard foam layer, the soft foam, the Be layer, the foam inside the capsule, and the variation of x-ray power, respectively. (b) The time variation of total kinetic energy over the whole hohlraum

    图  11  有靶丸和硬泡沫层情况下,动态黑腔内爆形成过程中各层等离子体动能和靶丸中各层动能随时间的变化

    Figure  11.  Time variations of kinetic energies of all imploding plasma shells in the whole hohlraum and only in the capsule for the dynamic hohlraum with a capsule and a hard foam (CH) layer

    图  12  有靶丸和硬泡沫层情况下,动态黑腔内爆过程中全域平均物质温度和辐射温度,及各层物质平均温度随时间的变化

    Figure  12.  Time variations of totally averaged matter and radiation temperatures, and individually averaged matter temperature of the shells, in the dynamic hohlraum formation, with a capsule and a hard foam (CH) layer

    图  13  有靶丸和硬泡沫层情况下,(a)半径为0.3 cm的靶丸表面上,三个铍物质点的密度和辐射温度随动态黑腔内爆形成过程的变化;(b)辐射温度沿赤道(90°方向)径向的分布和演化

    Figure  13.  In the dynamic hohlraum with a capsule and a hard foam (CH) layer, (a) the time variations of Be mass density and radiation temperature of three mass points, which are located in a circle of radius 0.3 cm; (b) radial profile of the radiation temperature along the equator at different time

    图  14  NIF上的黑腔辐射温度(文献[2]中图1)波形与Z箍缩动态黑腔中靶丸感受到的辐射温度(90°方向)变化的比较

    Figure  14.  Comparison between the huhlraum radiation temperature of NIF (data from Fig.1 in Ref. [2]) and the radiation temperature, which is received by the capsule in the Z-pinch dynamic hohlraum with an embedded hard foam layer, at 90° from z-axis

    图  15  有靶丸和硬泡沫层情况下,模拟区域中辐射温度在几个特征时刻的空间分布伪色彩图

    Figure  15.  Color contour maps of radiation temperature distribution in the simulated domain in the dynamic hohlraum with a capsule and a hard foam (CH) layer

    图  16  半径为0.3 cm的球面上两个物质点的辐射温度随时间的变化

    Figure  16.  Time variations of the radiation temperature of two mass points, which are located in a circle of radius 0.3 cm

  • [1] Tollefson J, Gibney E. Nuclear-fusion lab achieves ‘ignition’: what does it mean?[J]. Nature, 2022, 612(7941): 597-598. doi: 10.1038/d41586-022-04440-7
    [2] Abu-Shawareb H, Acree R, Adams P, et al. Lawson criterion for ignition exceeded in an inertial fusion experiment[J]. Physical Review Letters, 2022, 129: 075001. doi: 10.1103/PhysRevLett.129.075001
    [3] Kritcher A L, Zylstra A B, Callahan D A, et al. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition[J]. Physical Review E, 2022, 106: 025201. doi: 10.1103/PhysRevE.106.025201
    [4] Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 2022, 106: 025202. doi: 10.1103/PhysRevE.106.025202
    [5] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [6] Lan Ke, Liu Jie, Lai Dongxian, et al. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14[J]. Physics of Plasmas, 2014, 21: 010704. doi: 10.1063/1.4863435
    [7] Lan Ke. Dream fusion in octahedral spherical hohlraum[J]. Matter and Radiation at Extremes, 2022, 7: 055701. doi: 10.1063/5.0103362
    [8] Huo Wenyi, Li Zhichao, Chen Yaohua, et al. First octahedral spherical hohlraum energetics experiment at the SGIII laser facility[J]. Physical Review Letters, 2018, 120: 165001. doi: 10.1103/PhysRevLett.120.165001
    [9] Li Xin, Dong Yunsong, Kang Dongguo, et al. First indirect drive experiment using a six-cylinder-port hohlraum[J]. Physical Review Letters, 2022, 128: 195001. doi: 10.1103/PhysRevLett.128.195001
    [10] Leeper R J, Alberts T E, Asay J R, et al. Z pinch driven inertial confinement fusion target physics research at Sandia National Laboratories[J]. Nuclear Fusion, 1999, 39(9Y): 1283-1294. doi: 10.1088/0029-5515/39/9Y/306
    [11] Nash T J, Derzon M S, Chandler G A, et al. High-temperature dynamic hohlraums on the pulsed power driver Z[J]. Physics of Plasmas, 1999, 6(5): 2023-2029. doi: 10.1063/1.873457
    [12] Bailey J E, Chandler G A, Slutz S A, et al. X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum[J]. Physical Review Letters, 2002, 89: 095004. doi: 10.1103/PhysRevLett.89.095004
    [13] Rochau G A, Bailey J E, Maron Y, et al. Radiating shock measurements in the Z-pinch dynamic hohlraum[J]. Physical Review Letters, 2008, 100: 125004. doi: 10.1103/PhysRevLett.100.125004
    [14] Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Physics of Plasmas, 2006, 13: 056301. doi: 10.1063/1.2177640
    [15] Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B591-B600. doi: 10.1088/0741-3335/49/12B/S55
    [16] Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001
    [17] Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587
    [18] 蒋树庆, 甯家敏, 陈法新, 等. Z箍缩动态黑腔动力学及辐射特性初步实验研究[J]. 物理学报, 2013, 62:155203 doi: 10.7498/aps.62.155203

    Jiang Shuqing, Ning Jiamin, Chen Faxin, et al. Preliminary experimental study on implosion dynamics and radiation character of Z-pinch dynamic hohlraum[J]. Acta Physica Sinica, 2013, 62: 155203 doi: 10.7498/aps.62.155203
    [19] Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
    [20] Chu Y Y, Wang Z, Qi J M, et al. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7: 035902. doi: 10.1063/5.0079074
    [21] 吴福源, 禇衍运, 叶繁, 等. Z箍缩动态黑腔形成过程MULTI程序一维数值模拟[J]. 物理学报, 2017, 66:215201 doi: 10.7498/aps.66.215201

    Wu Fuyuan, Chu Yanyun, Ye Fan, et al. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 2017, 66: 215201 doi: 10.7498/aps.66.215201
    [22] Mao Chongyang, Wen Wu, Xiao Delong, et al. Analytical physical models for cryogenic double-shell capsule design driven by Z-pinch dynamic Hohlraum[J]. Physics of Plasmas, 2021, 28: 092706. doi: 10.1063/5.0057626
    [23] Chen Shijia, Ma Yanyun, Wu Fuyuan, et al. Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum[J]. Chinese Physics B, 2021, 30: 115201. doi: 10.1088/1674-1056/ac01c2
    [24] Ramis R, Meyer-ter-Vehn J, Ramírez J. MULTI2D–a computer code for two-dimensional radiation hydrodynamics[J]. Computer Physics Communications, 2009, 180(6): 977-994. doi: 10.1016/j.cpc.2008.12.033
    [25] Ning Cheng, Chen Zhongwang. 2-D numerical investigation of the formation of Z-pinch-driven dynamic hohlraum at 8-MA current level[J]. IEEE Transactions on Plasma Science, 2018, 46(11): 3794-3804. doi: 10.1109/TPS.2018.2871217
    [26] 陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟[J]. 物理学报, 2017, 66:125202 doi: 10.7498/aps.66.125202

    Chen Zhongwang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z[J]. Acta Physica Sinica, 2017, 66: 125202 doi: 10.7498/aps.66.125202
    [27] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征[J]. 物理学报, 2014, 63:125208 doi: 10.7498/aps.63.125208

    Ning Cheng, Feng Zhixing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch[J]. Acta Physica Sinica, 2014, 63: 125208 doi: 10.7498/aps.63.125208
  • 加载中
图(16)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  111
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-06-13
  • 录用日期:  2023-06-15
  • 网络出版日期:  2023-06-26
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回