留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅析美国高功率微波效应研究动态

张帅 张艺博 涂敏

张帅, 张艺博, 涂敏. 浅析美国高功率微波效应研究动态[J]. 强激光与粒子束, 2024, 36: 013001. doi: 10.11884/HPLPB202436.230304
引用本文: 张帅, 张艺博, 涂敏. 浅析美国高功率微波效应研究动态[J]. 强激光与粒子束, 2024, 36: 013001. doi: 10.11884/HPLPB202436.230304
Zhang Shuai, Zhang Yibo, Tu Min. Brief analysis of research trends of high power microwave effect in the United States[J]. High Power Laser and Particle Beams, 2024, 36: 013001. doi: 10.11884/HPLPB202436.230304
Citation: Zhang Shuai, Zhang Yibo, Tu Min. Brief analysis of research trends of high power microwave effect in the United States[J]. High Power Laser and Particle Beams, 2024, 36: 013001. doi: 10.11884/HPLPB202436.230304

浅析美国高功率微波效应研究动态

doi: 10.11884/HPLPB202436.230304
详细信息
    作者简介:

    张 帅,zhangshuai@nint.ac.cn

  • 中图分类号: TN820.1

Brief analysis of research trends of high power microwave effect in the United States

  • 摘要:

    简要介绍了美国国际高级研究计划局(DARPA)发布的“波形捷变射频定向能(WARDEN)”项目、空军研究实验室公布的《定向能和基地防御》和《定向能未来2060−美国国防部定向能技术未来40年远景》报告,重点分析了“WARDEN”项目、《定向能和基地防御》和《定向能未来2060−美国国防部定向能技术未来40年远景》报告中的高功率微波效应研究动态,分析归纳了当前美国高功率微波效应研究进展和研究重点是“深化无人机和巡航导弹高功率微波后门扰乱效应机理,提升高功率微波武器系统对无人机和巡航导弹的攻击距离”,这些结论可为我国高功率微波效应研究提供重要参考。

  • 图  1  HPM经前门和后门耦合路径进入目标,在内部电子系统产生HPM效应[6]

    Figure  1.  HPM radiation incident upon a target can couple into the target via front door and back door pathways and cause effects on internal electronics within the target structure [6]

    图  2  美国空军实验室高功率微波效应介绍[7]

    Figure  2.  Introduction of US Air Force Research Laboratory high power microwave effect research [7]

    表  1  深化反无人机和反导高功率微波效应理解

    Table  1.   Expanded effects understanding in counter-UAS and counter-missile

    front door coupling paths back door coupling paths
    ➢ HPM field couples to antennas
    ➢ in-band HPM energy at receiver
    ➢ vulnerable components: low noise amplifiers (LNAs), limiters
    ➢ effect is generally damage
    ➢ can achieve EW-like effects with upset
    ➢ control/guidance systems involve digital electronics
    ➢ HPM field couples to control wires (e.g. UAS),
    internal cables (e.g. missile)
    ➢ effect typically disruption of digital electronics
    下载: 导出CSV
  • [1] 孔令岩, 木木, 王俊. 探秘美国新型高功率微波武器[EB/OL]. (2020-04-29). https://www.sohu.com/a/392071858_99989631.

    Kong Lingyan, Mu Mu, Wang Jun. Discover America’s new high power microwave weapon[EB/OL]. (2020-04-29). https://www.sohu.com/a/392071858_99989631.
    [2] 禹化龙, 伍尚慧. 美军定向能武器反无人机技术进展[J]. 国防科技, 2019, 40(6):42-47 doi: 10.13943/j.issn1671-4547.2019.06.09

    Yu Hualong, Wu Shanghui. Progress and development trend analysis on US directed energy weapons against unmanned aerial vehicles[J]. National Defense Science Technology, 2019, 40(6): 42-47 doi: 10.13943/j.issn1671-4547.2019.06.09
    [3] Rachel S C. Microwave weapons moving toward operational use[EB/OL]. (2019-03-20). https://www.airandspaceforces.com/microwave-weapons-moving-toward-operational-use/.
    [4] 石峰. 美国海军和空军将联合开展新型高功率微波武器测试[EB/OL]. (2022-07-06). https://www.cannews.com.cn/2022/0706/346731.shtml.

    Shi Feng. The US Navy and Air Force will jointly test new high power microwave weapons[EB/OL]. (2022-07-06). https://www.cannews.com.cn/2022/0706/346731.shtml.
    [5] 美国陆军授予Epirus公司价值6610万美元的Leonidas™定向能系统合同[EB/OL]. 2023

    The US Army awarded Epirus a 66.1million Leonidas directed energy system contract[EB/OL]. 2023
    [6] 美国国防高级研究计划局(DAPRA). 波形捷变RF定向能[EB/OL]. 2021

    DARPA. Broad agency announcement: waveform agile RF directed energy (WARDEN)[EB/OL]. 2021
    [7] 美国空军研究实验室. 定向能和基地防御[EB/OL]. 2019

    US Air Force Research Laboratory. Directed Energy and Base Defense[EB/OL]. 2019
    [8] 美国空军研究实验室. 定向能未来2060—美国国防部定向能技术未来40年远景[EB/OL]. 2021

    US Air Force Research Laboratory. Directed Energy Futures 2060—Visions for the next 40 years of US Department of Defense Directed Energy technologies[EB/OL]. 2021
    [9] Clarke T, Guillette D. Modeling radio-frequency effects on a microcontroller[C]//Proceedings of ICEAA Conference. 2019: 1050-1053.
    [10] Cui Y, Darmody C, Goldsman N. Nano & micro scale device-level EMI induced vulnerability: simulations and experiments[C]//Proceedings of the 4th Annual UCOE Review. 2019.
    [11] Dietz D. Stochastic propagation delay through a CMOS inverter as a consequence of stochastic power supply voltage-part I: model formulation[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(1): 226-232. doi: 10.1109/TEMC.2018.2810254
    [12] Lawrance J, Landavazo M, McConaha J. Investigation of frequency dependence of upset threshold in a typical X86 ATX desktop computer[R]. Air Force Research Laboratory Technical Report, DTIC AD1063445, 2017.
    [13] Peng Zhen, Shao Yang, Gao Hongwei, et al. High-fidelity, high-performance computational algorithms for intrasystem electromagnetic interference analysis of IC and electronics[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(5): 653-668. doi: 10.1109/TCPMT.2016.2636296
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  649
  • HTML全文浏览量:  382
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2023-11-16
  • 录用日期:  2023-11-16
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回