留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超宽带脉冲作用下抗干扰器件的特性分析

陈圣贤 胡明 李永龙 袁雪林

陈圣贤, 胡明, 李永龙, 等. 超宽带脉冲作用下抗干扰器件的特性分析[J]. 强激光与粒子束, 2024, 36: 013011. doi: 10.11884/HPLPB202436.230312
引用本文: 陈圣贤, 胡明, 李永龙, 等. 超宽带脉冲作用下抗干扰器件的特性分析[J]. 强激光与粒子束, 2024, 36: 013011. doi: 10.11884/HPLPB202436.230312
Chen Shengxian, Hu Ming, Li Yonglong, et al. Characteristic analysis of anti-jamming device under ultra-wide bandwidth pulse[J]. High Power Laser and Particle Beams, 2024, 36: 013011. doi: 10.11884/HPLPB202436.230312
Citation: Chen Shengxian, Hu Ming, Li Yonglong, et al. Characteristic analysis of anti-jamming device under ultra-wide bandwidth pulse[J]. High Power Laser and Particle Beams, 2024, 36: 013011. doi: 10.11884/HPLPB202436.230312

超宽带脉冲作用下抗干扰器件的特性分析

doi: 10.11884/HPLPB202436.230312
基金项目: 中国电波传播研究所稳定支持项目(A132301215)
详细信息
    作者简介:

    陈圣贤,chenshx75@mail2.sysu.edu.cn

    通讯作者:

    袁雪林,yuanxlin3@mail.sysu.edu.cn

  • 中图分类号: TN972

Characteristic analysis of anti-jamming device under ultra-wide bandwidth pulse

  • 摘要: 基于高重频超宽带脉冲,研究了高重频超宽带脉冲对自适应调零天线和PIN限幅器的抗干扰性能的影响。基于Matlab和ADS仿真软件搭建模型,并通过实验平台对ADS的仿真结果进行验证。实验结果表明:对于导航接收机中的自适应调零天线,超宽带干扰脉冲会使其射频链路产生饱和效应,从而使功率倒置算法失效,进而无法在干扰方向形成零陷;对于PIN限幅器,超宽带干扰脉冲可以使其产生明显的尖峰泄露效应。相较于ns量级的窄谱高功率微波脉冲,超宽带脉冲对限幅器的干扰能力更强。
  • 图  1  适应调零天线的结构框图

    Figure  1.  Block diagram of the structure of the adaptive nulling antenna

    图  2  功率倒置抗干扰结果图

    Figure  2.  Results of power inversion anti-jamming

    图  3  饱和效应下的多次功率倒置算法仿真

    Figure  3.  Multiple simulation of the power inversion algorithm under saturation effect

    图  4  PIN限幅器电路实验图

    Figure  4.  Experimental circuit diagram of PIN limiter

    图  5  PIN限幅器插入损耗曲线

    Figure  5.  PIN limiter insertion loss curve

    图  6  限幅器对小信号的影响

    Figure  6.  Effect of limiter on small signals

    图  7  脉冲上升时间为10 ns下的限幅作用

    Figure  7.  Experimental waveforms, the pulse rise time is 10 ns for clipping action

    图  8  UWB脉冲作用于限幅器

    Figure  8.  Simulation waveforms with UWB pulse applied to the limiter

    图  9  合路注入结果图

    Figure  9.  Diagram of combined injection result

    图  10  实验流程图

    Figure  10.  Flow chart of the experiment

    图  11  脉冲注入实验平台

    Figure  11.  Pulse injection experimental platform

    图  12  限幅器插入损耗曲线

    Figure  12.  Limiter insertion loss curve

    图  13  正常状态下的模拟信号和经过PIN限幅器后的模拟信号

    Figure  13.  The analog signal in the normal state and the analog signal after passing through the PIN limiter

    图  14  经过限幅器前后的窄谱脉冲

    Figure  14.  Narrow-spectrum pulses before and after the limiter

    图  15  输入的UWB脉冲和不同幅值下的输出波形

    Figure  15.  Input UWB pulses and output waveforms at different amplitudes

    图  16  增加上升沿后脉冲前后对比图

    Figure  16.  Pulse before and after increase of rising edge

  • [1] Zhu Kaichen, Wen Chao, Aljarb A A, et al. The development of integrated circuits based on two-dimensional materials[J]. Nature Electronics, 2021, 4(11): 775-785. doi: 10.1038/s41928-021-00672-z
    [2] 赵宇姣. 基于高重频超宽带脉冲的雷达干扰技术研究[D]. 成都: 电子科技大学, 2015

    Zhao Yujiao. Radar interference technology research based on the high repetition frequency ultra-wide-band pulse[D]. Chengdu: University of Electronic Science and Technology of China, 2015
    [3] 崔国龙, 余显祥, 魏文强, 等. 认知智能雷达抗干扰技术综述与展望[J]. 雷达学报, 2022, 11(6):974-1002 doi: 10.12000/JR22191

    Cui Guolong, Yu Xianxiang, Wei Wenqiang, et al. An overview of antijamming methods and future works on cognitive intelligent radar[J]. Journal of Radars, 2022, 11(6): 974-1002 doi: 10.12000/JR22191
    [4] 孙丽英, 陈滨, 董晓晴. 卫星导航信号抗干扰技术应用[J]. 数字技术与应用, 2022, 40(8):81-83

    Sun Liying, Chen Bin, Dong Xiaoqing. Application of anti-jamming technology of satellite navigation signal[J]. Digital Technology & Application, 2022, 40(8): 81-83
    [5] 张华媛. 卫星通信抗干扰技术研究[J]. 科技创新与应用, 2022, 12(31):189-192

    Zhang Huayuan. Research on anti-jamming technology of satellite communication[J]. Technology Innovation and Application, 2022, 12(31): 189-192
    [6] 林琦. 超宽带脉冲信号调制发生功率谱密度的MatLab仿真[D]. 上海: 复旦大学, 2008

    Lin Qi. MatLab simulation of generating power spectrum density of ultra-wideband pulse signal modulation[D]. Shanghai: Fudan University, 2008
    [7] 刘辉. 超宽带脉冲产生技术研究[D]. 西安: 西安电子科技大学, 2010

    Liu Hui. Research on impulse generation in UWB systems[D]. Xi’an: Xidian University, 2010
    [8] 王明. PIN限幅器高功率微波重复脉冲效应机理研究[D]. 北京: 中国工程物理研究院, 2018

    Wang Ming. Research on the mechanism of repeated pulse effect of high power microwave with PIN limiter[D]. Beijing: China Academy of Engineering Physics, 2018
    [9] 王冬冬, 邓峰, 郑生全, 等. PIN二极管限幅器的电磁脉冲损伤特性试验[J]. 中国舰船研究, 2015, 10(2):65-69 doi: 10.3969/j.issn.1673-3185.2015.02.012

    Wang Dongdong, Deng Feng, Zheng Shengquan, et al. Experimental investigation on the EMP damage characteristics of PIN diode limiters[J]. Chinese Journal of Ship Research, 2015, 10(2): 65-69 doi: 10.3969/j.issn.1673-3185.2015.02.012
    [10] 袁月乾, 陈自东, 马弘舸, 等. PIN限幅器的高功率微波单脉冲效应研究[J]. 强激光与粒子束, 2020, 32:063003 doi: 10.11884/HPLPB202032.190174

    Yuan Yueqian, Chen Zidong, Ma Hongge, et al. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32: 063003 doi: 10.11884/HPLPB202032.190174
    [11] 陈自东, 秦风, 赵景涛, 等. 高功率微波作用下限幅器尖峰泄漏特性[J]. 强激光与粒子束, 2020, 32:103014 doi: 10.11884/HPLPB202032.200097

    Chen Zidong, Qin Feng, Zhao Jingtao, et al. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 32: 103014 doi: 10.11884/HPLPB202032.200097
    [12] Park S, Lee C. An adaptive nulling scheme for approximated block diagonalization-based space shift keying in downlink multi-user massive MIMO systems[J]. Journal of the Institute of Electronics and Information Engineers, 2018, 55(2): 22-28. doi: 10.5573/ieie.2018.55.2.22
    [13] Ullah I, Munsif H, Razzaq S, et al. Cylindrical phased array with adaptive nulling using eigen-correlation technique[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e22969.
    [14] Liu Wenxiang, Lu Zukun, Wang Zhiying, et al. Sidelobes suppression for time domain anti-jamming of satellite navigation receivers[J]. Remote Sensing, 2022, 14: 5609. doi: 10.3390/rs14215609
    [15] 张冲, 李锋, 税利, 等. 调零天线对GNSS接收机抗干扰能力影响研究[C]//第十一届中国卫星导航年会论文集——S11 抗干扰与反欺骗技术. 2020: 22-27

    Zhang Chong, Li Feng, Shui Li, et al. Research on the effect of zeroing antenna on anti-jamming capability of GNSS receiver[C]//11th China Satellite Navigation Annual Conference. 2020: 22-27
    [16] Cao Kejin, Luo Zhengwang, Ma Hengchao, et al. Phase analysis and error compensation of anti-jamming nulling algorithm for satellite navigation array antenna[J]. International Journal of Wireless and Mobile Computing, 2020, 19(3): 249-255. doi: 10.1504/IJWMC.2020.111210
    [17] 李成城, 李鹏程. 卫星导航自适应调零天线抗干扰技术[J]. 电子信息对抗技术, 2020, 35(6):59-63

    Li Chengcheng, Li Pengcheng. Anti-jamming technology of adaptive nulling antenna of satellite navigation[J]. Electronic Information Warfare Technology, 2020, 35(6): 59-63
    [18] 李永龙, 袁雪林, 刘九龙, 等. 基于低轨卫星的分布式超宽带电磁脉冲对地面接收机干扰技术[J]. 强激光与粒子束, 2023, 35:033006 doi: 10.11884/HPLPB202335.220225

    Li Yonglong, Yuan Xuelin, Liu Jiulong, et al. Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites[J]. High Power Laser and Particle Beams, 2023, 35: 033006 doi: 10.11884/HPLPB202335.220225
  • 加载中
图(16)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  173
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-11-13
  • 录用日期:  2023-11-29
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回