留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于高功率微波器件的传导冷高温磁体研制

徐策 刘辉 刘建华 戴银明 陈顺中 程军胜 王秋良 霍少飞 史彦超 黄慧杰

徐策, 刘辉, 刘建华, 等. 用于高功率微波器件的传导冷高温磁体研制[J]. 强激光与粒子束, 2024, 36: 013013. doi: 10.11884/HPLPB202436.230334
引用本文: 徐策, 刘辉, 刘建华, 等. 用于高功率微波器件的传导冷高温磁体研制[J]. 强激光与粒子束, 2024, 36: 013013. doi: 10.11884/HPLPB202436.230334
Xu Ce, Liu Hui, Liu Jianhua, et al. Development of conduction-cold high temperature superconductingmagnet for high power microwave devices[J]. High Power Laser and Particle Beams, 2024, 36: 013013. doi: 10.11884/HPLPB202436.230334
Citation: Xu Ce, Liu Hui, Liu Jianhua, et al. Development of conduction-cold high temperature superconductingmagnet for high power microwave devices[J]. High Power Laser and Particle Beams, 2024, 36: 013013. doi: 10.11884/HPLPB202436.230334

用于高功率微波器件的传导冷高温磁体研制

doi: 10.11884/HPLPB202436.230334
基金项目: 国家重点研发计划项目(2022YFB3804000)
详细信息
    作者简介:

    徐 策,xc@mail.iee.ac.cn

  • 中图分类号: TN128

Development of conduction-cold high temperature superconductingmagnet for high power microwave devices

  • 摘要: 为了利于高功率微波系统的紧凑化和小型化,降低系统能耗,对产生引导磁场的超导磁体系统进行了研究设计。超导磁体使用稀土钡铜氧化物线饼组成。低温系统采用4台小型风冷式斯特林制冷机对超导磁体冷却。为了适用于车载环境并降低漏热,采用了一种非金属材料的新型锥体结构作为磁体的承载结构,并通过仿真分析了一般的车载环境下的磁体结构承载情况。整个高温超导磁体工作温区为40~50 K,达到目标场时的通电电流为77.49 A,均匀区场强达到4 T。整个系统能耗较传统技术降低80%。通过实验测试出高温超导磁体的温度运行上限为48.9 K。
  • 图  1  内外层磁体的组成与位置关系

    Figure  1.  Composition and position of the HTS magnet modules

    图  2  4 T超导磁体磁场分布

    Figure  2.  Magnetic field distribution of the 4 T superconducting magnet

    图  3  外层骨架与工装骨架

    Figure  3.  Outer skeleton and tooling skeleton

    图  4  4 T超导磁体系统结构示意图

    Figure  4.  Configuration of the 4 T superconducting magnet system

    图  5  双锥结构示意图

    Figure  5.  Configuration of tapered structure

    图  6  超导磁体应力云图

    Figure  6.  Stress cloud of superconducting magnet

    图  7  磁体各组件的冷却曲线

    Figure  7.  Cooling curves of the various parts of the magnet structure

    图  8  励磁过程中线圈电压变化

    Figure  8.  Voltage of the coil pancakes during the excitation process

    图  9  在运行温度48.9 K下励磁稳定过程中线圈电压

    Figure  9.  Voltage of the coil pancakes during the excitation stabilized process at operating temperature 48.9 K

    图  10  励磁和退磁过程中磁场强度和电流变化

    Figure  10.  Field strength and current changes during excitation and demagnetization

    表  1  REBCO带材在40 K和50 K垂直场下对应的Ic

    Table  1.   The Ic-B-θ-T characteristics curve of REBCO strip at 40 K and 50 K in vertical fields

    temperature/K Ic/A
    0 0.5 T 1.0 T 1.5 T 2.0 T 2.5 T 3.0 T 3.5 T 4.0 T 4.5 T 5.0 T 5.5 T 6.0 T 6.5 T 7.0 T
    40 399.0 241.8 190.2 170.1 153.6 140.4 129.3 122.1 112.5 105.9 99.0 93.0 87.6 83.4 78.6
    50 296.7 168.6 135.9 120.0 106.2 96.0 88.8 81.9 75.6 69.6 64.5 60.0 56.1 51.6 48.6
    下载: 导出CSV

    表  2  低温系统热负荷

    Table  2.   Thermal load of the cryostat

    temperature/Kheat leakage of supports/Wheat leakage of current leads/Wradiation/Wradial resistance/Wjoint resistance/Wsum/W
    402.00.30.10.02510.03482.46
    775.28.015.0\\28.00
    下载: 导出CSV

    表  3  磁体各零组件属性

    Table  3.   Material property of each component of magnet

    No. material temperature/K density/(g/cm3) Young’s modulus@300 K/GPa Poisson’s ratio coefficient of linear expansion/(10−5 K−1)
    1 PAI 40~300 1.6 6.4 0.43 1.0
    2 AISI 304 40/300 7.9 200.0 0.30 1.3
    3 1100 AL 80 2.7 70.0 0.30 1.5
    4 T2 Cu 40 8.9 70.0 0.30 1.0
    下载: 导出CSV

    表  4  三个方向的高速路谱随机振动对磁体两端轴线影响

    Table  4.   Influence of random vibration of highway spectrum in three directions on the axis of magnet

    axiality Ux/mm Uy/mm Uz/mm Usum/mm
    y random vibration p-axis deviation 4.64E-04 2.09E-02 2.08E-04 2.08E-02
    s-axis deviation 1.29E-03 2.02E-02 2.02E-04 2.03E-02
    z random vibration p-axis deviation 4.80E-05 −1.52E-04 2.53E-02 2.53E-02
    s-axis deviation 3.44E-04 1.80E-03 2.51E-02 2.52E-02
    x random vibration p-axis deviation 6.32E-03 2.34E-04 1.03E-05 6.32E-03
    s-axis deviation 6.39E-03 2.73E-04 9.90E-06 6.40E-03
    下载: 导出CSV
  • [1] Benford J N, Cooksey N J, Levine J S, et al. Techniques for high power microwave sources at high average power[J]. IEEE Transactions on Plasma Science, 1993, 21(4): 388-392. doi: 10.1109/27.234566
    [2] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. New York: Taylor & Francis, 2007.
    [3] 周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007
    [4] 王荟达. C波段低磁场高效率相对论返波管研究[D]. 北京: 清华大学, 2021: 1-10

    Wang Huidao. Research on a C-band high-efficiency relativistic backward-wave oscillator with low-magnetic-field operation[D]. Beijing: Tsinghua University, 2021: 1-10
    [5] 胡祥刚, 宋玮, 李兰凯, 等. 用于高功率微波器件的永磁体的设计和测试[J]. 强激光与粒子束, 2016, 28:033017 doi: 10.11884/HPLPB201628.033017

    Hu Xianggang, Song Wei, Li Lankai, et al. Design and test of permanent magnet used in high power microwave devices[J]. High Power Laser and Particle Beams, 2016, 28: 033017 doi: 10.11884/HPLPB201628.033017
    [6] 陈昌华, 刘国治. 相对论返波管导论[M]. 北京: 科学出版社, 2021

    Chen Changhua, Liu Gouzhi. Introduction to relativistic backward wave oscillator[M]. Beijing: Science Press, 2021) ) .
    [7] Lemke R W, Clark M C, Marder B M. Theoretical and experimental investigation of a method for increasing the output power of a microwave tube based on the split-cavity oscillator[J]. Journal of Applied Physics, 1994, 75(10): 5423-5432. doi: 10.1063/1.355698
    [8] Chen Shunzhong, Dai Yinming, Zhao Baozhi, et al. Development of an 8-T conduction-cooled superconducting magnet with 300-mm warm bore for material processing application[J]. IEEE Transactions on Applied Superconductivity, 2014, 24: 4701605.
    [9] Xiao R Z, Zhang X W, Zhang L J, et al. Efficient generation of multi-gigawatt power by a klystron-like relativistic backward wave oscillator[J]. Laser and Particle Beams, 2010, 28(3): 505-511. doi: 10.1017/S0263034610000509
    [10] 陈昌华, 刘国治, 宋志敏, 等. 引导磁场对相对论返波管微波功率的影响[J]. 强激光与粒子束, 2000, 12(6):745-748

    Chen Changhua, Liu Gouzhi, Song Zhimin, et al. Effects of axial guiding magnetic field on microwave power of relativistic backward oscillators[J]. High Power Laser and Particle Beams, 2000, 12(6): 745-748
    [11] 严余军. 永磁包装高效率相对论返波管设计与研究[D]. 绵阳: 西南科技大学, 2021: 1-10

    Yan Yujun. Design and research of high-efficiency relativistic backward wave oscillator for permanent magnet packaging[D]. Mianyang: Southwest University of Science and Technology, 2021: 1-10
    [12] Andreev D, Kuskov A, Schamiloglu E. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4: 067201. doi: 10.1063/1.5100028
    [13] 陈顺中, 王秋良, 孙万硕, 等. 3T动物磁共振成像传导冷却超导磁体研究[J]. 电工技术学报, 2023, 38(4):879-888

    Chen Shunzhong, Wang Qiuliang, Sun Wanshuo, et al. The study of a 3T conduction-cooled superconducting magnet for animal magnetic resonance imaging[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 879-888)
    [14] Ma Qiaosheng, Li Zhenghong, Lu Chaozheng, et al. Efficient operation of an oversized backward-wave oscillator[J]. IEEE Transactions on Plasma Science, 2011, 39(5): 1201-1203. doi: 10.1109/TPS.2011.2123116
    [15] Song W, Chen C H, Sun J, et al. Investigation of an improved relativistic backward wave oscillator in efficiency and power capacity[J]. Physics of Plasmas, 2012, 19: 103111. doi: 10.1063/1.4759164
    [16] Wang Qiuliang, Wang Chunzhong, Wang Hui, et al. Development of conduction-cooled superconducting magnet for baby imaging[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 726-731. doi: 10.1109/TASC.2010.2040154
    [17] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法[J]. 物理学报, 2013, 62:020701 doi: 10.7498/aps.62.020701

    Ni Zhipeng, Wang Qiuliang, Yan Luguang. A hybrid optimization approach to design of compact self-shielded super conducting magnetic resonance imaging magnet system[J]. Acta Physica Sinica, 2013, 62: 020701 doi: 10.7498/aps.62.020701
    [18] Zhang Zili, Zhou Benzhe, Liu Jianhua, et al. Engineering-based design and fabrication procedure for mid-temperature REBCO magnets accommodating the strong Ic anisotropy[J]. Superconductivity, 2022, 1: 100005. doi: 10.1016/j.supcon.2022.100005
    [19] Stavrev S, Grilli F, Dutoit B, et al. Comparison of numerical methods for modeling of superconductors[J]. IEEE Transactions on Magnetics, 2002, 38(2): 849-852. doi: 10.1109/20.996219
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  260
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 修回日期:  2023-12-18
  • 录用日期:  2023-12-24
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回