Volume 30 Issue 12
Dec.  2018
Turn off MathJax
Article Contents
Wu Qingtao, Wen Huafeng, Wang Honghua, et al. Outgoing light bundle propagation of two-dimensional triangular lattice photonic crystal waveguide[J]. High Power Laser and Particle Beams, 2018, 30: 129002. doi: 10.11884/HPLPB201830.180161
Citation: Wu Qingtao, Wen Huafeng, Wang Honghua, et al. Outgoing light bundle propagation of two-dimensional triangular lattice photonic crystal waveguide[J]. High Power Laser and Particle Beams, 2018, 30: 129002. doi: 10.11884/HPLPB201830.180161

Outgoing light bundle propagation of two-dimensional triangular lattice photonic crystal waveguide

doi: 10.11884/HPLPB201830.180161
  • Received Date: 2018-06-08
  • Rev Recd Date: 2018-10-30
  • Publish Date: 2018-12-15
  • To control the light field at the exit end of the photonic crystal waveguide, it is difficult to overcome the radiation of the emitted light from the two-dimensional triangular lattice photonic crystal waveguide.A new type photonic crystal waveguide exit structure was designed using a two-dimensional triangular lattice photonic crystal.Two types of microcavities are introduced at the exit end of a two-dimensional triangular lattice photonic crystal waveguide.Light waves and the microcavity are resonated to form an exit light that is similar to the interference of three point light sources.An exit end bell design is further proposed.Analysis using time-domain finite-difference method shows that the light wave achieves good directional radiation and the radiation distance is significantly improved with the design of the microcavity bell mouth.This kind of photonic crystal device has great significance for the high efficiency coupling with other devices, and has potential application value in photoelectric integration and neardistance optical research.
  • loading
  • [1]
    陆晓东. 光子晶体材料在集成光学和光伏中的应用[M]. 北京: 冶金工业出版社, 2014.

    Lu Xiaodong. Application of photonic crystal materials in integrated optics and photovoltaics. Beijing: Metallurgical Industry Press, 2014
    [2]
    Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059. doi: 10.1103/PhysRevLett.58.2059
    [3]
    John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [4]
    Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6): 1114-1117.
    [5]
    Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture[J]. Science, 2002, 297(5582): 820-822. doi: 10.1126/science.1071895
    [6]
    Martín-Moreno L, García-Vidal F J, Lezec H J, et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Physical Review Letters, 2003, 90: 167401. doi: 10.1103/PhysRevLett.90.167401
    [7]
    Kramper P, Agio M, Soukoulis C M. Highly directional emission from photonic crystal waveguides of subwavelength width[J]. Physical Review Letters, 2004, 92: 113903. doi: 10.1103/PhysRevLett.92.113903
    [8]
    Li Zhaofeng, Aydin K, Ozbay E, et al. Highly directional emission from photonic crystals with a wide bandwidth[J]. Applied Physics Letters, 2007, 91: 121105. doi: 10.1063/1.2786590
    [9]
    Morrison S K, Kivshar Y S. Beaming effect and directional emission from photonic-crystal waveguides[C]//Proc of SPIE. 2005: 5733.
    [10]
    Chen C C, Pertsch T, Iliew R, et al. Directional emission from photonic crystal waveguides[J]. Optics Express, 2006, 14(6): 2423-2428. doi: 10.1364/OE.14.002423
    [11]
    Kurt H. Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits[J]. IEEE Photonics Technology Letters, 2008, 20(20): 1682-1684. doi: 10.1109/LPT.2008.2003403
    [12]
    Wang Q, Cui Y, Yan C, et al. Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification[J]. Journal of Physics D Applied Physics, 2008, 41: 105110. doi: 10.1088/0022-3727/41/10/105110
    [13]
    Bulu I, Caglayan H, Ozbay E. Beaming of light and enhanced transmission via surface modes of photonic crystals[J]. Optics Letters, 2005, 30(22): 3078-3080. doi: 10.1364/OL.30.003078
    [14]
    Morrison S K, Kivshar Y S. Nonlinear spatial switching and beaming of light from photonic-crystal waveguides[C]//IEEE Conference on Lasers and Electro-Optics Europe. 2006: 246-247.
    [15]
    Sharma V, Saini S K, Sharma R. Design of channel ADD Drop filter using photonic crystal ring resonator[C]//IEEE International Conference on Computer, Communications and Electronics. 2017: 124-129.
    [16]
    全宇军, 韩培德, 陆晓东, 等. 一种计算和分析二维光子晶体缺陷模式的方法[J]. 光学学报, 2006, 26(12): 1841-1846. doi: 10.3321/j.issn:0253-2239.2006.12.016

    Quan Yujun, Han Peide, Lu Xiaodong, et al. A method for calculating and analyzing defect patterns of two-dimensional photonic crystals. Acta Optica Sinica, 2006, 26(12): 1841-1846 doi: 10.3321/j.issn:0253-2239.2006.12.016
    [17]
    罗子谦. 二维光子晶体波导出射光集束及偏转的相关研究[D]. 杭州: 浙江大学, 2008.

    Luo Ziqian. Study on beaming and deflection in two-dimensional photonic crystal waveguide. Hangzhou: Zhejiang University, 2008
    [18]
    冯先成, 何岩, 司擎华, 等. 点缺陷二维光子晶体波导的出射光集束[J]. 强激光与粒子束, 2014, 26: 031007. doi: 10.3788/HPLPB201426.031007

    Feng Xiancheng, He Yan, Si Qinghua, et al. Pointed defect two-dimensional photonic crystal waveguides outgoing light bundles. High Power Laser and Particle Beams, 2014, 26: 031007 doi: 10.3788/HPLPB201426.031007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (1624) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return