Volume 31 Issue 11
Oct.  2019
Turn off MathJax
Article Contents
Lei Pengli, Hou Jing, Wang Jian, et al. Smoothing of mid-spatial frequency errors by computer controlled surface processing[J]. High Power Laser and Particle Beams, 2019, 31: 111002. doi: 10.11884/HPLPB201931.190177
Citation: Lei Pengli, Hou Jing, Wang Jian, et al. Smoothing of mid-spatial frequency errors by computer controlled surface processing[J]. High Power Laser and Particle Beams, 2019, 31: 111002. doi: 10.11884/HPLPB201931.190177

Smoothing of mid-spatial frequency errors by computer controlled surface processing

doi: 10.11884/HPLPB201931.190177
  • Received Date: 2019-05-22
  • Rev Recd Date: 2019-06-25
  • Publish Date: 2019-11-15
  • Computer Controlled Surface Processing(CCOS) technology has been widely and successfully applied to the manufacture of optical components. In typical extreme optical manufacturing engineering, smoothing the surface errors is a very important process. Based on Presston equation, the tool influence function (TIF) of polishing pad is modeled, and the theoretical expression of TIF is obtained. Based on the parametric smoothing model, a multi-parameter time-dependent theoretical model is established. The results show that the surface error of components converges exponentially with the polishing process, and the convergence efficiency depends on the polishing parameters such as material parameters and volume removal rate. The smoothing curve of the theoretical model is simulated and analyzed, and the smoothing efficiency under different technological conditions is compared. The results show that the higher the material coefficient is, the higher the overall smoothing efficiency is. Similarly, the larger the volume removal rate of the polishing pad, the higher the smoothing efficiency of the surface error. A series of smoothing experiments with 3, 5 and 7 mm ripple errors were carried out. The results show that under the same polishing parameters, the smoothing efficiency of ripple with larger spatial frequency will be higher and the convergence curve will decline faster. Finally, the smoothing efficiencies of different material are compared, and the experimental results show that the smoothing efficiency of pitch pad is much higher than that of polyurethane polishing pad.
  • loading
  • [1]
    Jones R A. Optimization of computer controlled polishing[J]. Applied Optics, 1977, 16(1): 218-224. doi: 10.1364/AO.16.000218
    [2]
    Nelson J, Sanders G H. The status of the Thirty Meter Telescope project[C]//Proc of SPIE. 2008: 70121A.
    [3]
    Johns M, Mccarthy P, Raybould K, et al. Giant Magellan Telescope: Overview[C]//Proc of SPIE. 2012: 84441H.
    [4]
    Wagner R E, Shannon R R. Fabrication of aspherics using a mathematical model for material removal[J]. Applied Optics, 1974, 13(7): 1683-1689. doi: 10.1364/AO.13.001683
    [5]
    王毅, 倪颖, 余景池. 小型非球面数控抛光技术的研究[J]. 光学精密工程, 2007, 15(10): 1527-1533. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200710013.htm

    Wang Yi, Ni Ying, Yu Jingchi. Computer-controlled polishing technology for small aspheric lens. Optics and Precision Engineering, 2007, 15(10): 1527-1533 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200710013.htm
    [6]
    Wang Zhenzhong, Peng Yunfeng, Guo Yinbiao, et al. Modeling of the static tool influence function of bonnet polishing based on FEA[J]. Int J Adv Manuf Techno, 2014, 74: 341-349. doi: 10.1007/s00170-014-6004-3
    [7]
    Dong Zhichao, Cheng Haobo, Tam Honyuen. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate[J]. Applied Optics, 2014, 53(11): 2455-2464. doi: 10.1364/AO.53.002455
    [8]
    Nelson D G, Gould A, Klinger C, et al. Incorporating VIBE into the precision optics manufacturing process[C]//Proc of SPIE. 2011: 812613.
    [9]
    李徐钰, 魏朝阳, 徐文东, 等. 随动压力分布下的非球面抛光去除函数[J]. 光学 精密工程, 2016, 24(12): 3061-3067. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201612027.htm

    Li Xuyu, Wei Chaoyang, Xu Wendong, et al. Tool influence function in aspheric polishing under dynamic pressure distribution. Optics and Precision Engineering, 2016, 24(12): 3061-3067 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201612027.htm
    [10]
    王佳, 范斌, 万勇建, 等. 一种评价CCOS抛光工艺误差抑制能力的方法[J]. 光子学报, 2014, 43: 722002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201407035.htm

    Wang Jia, Fan Bin, Wan Yongjian, et al. A method to evaluate the error restraint ability of CCOS process. Acta Photonica Sinica, 2014, 43: 722002 https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201407035.htm
    [11]
    Mehta A P K, Hufnagel R E. Pressure distribution under flexible polishing tools: I. Conventional aspheric optics[C]//Proc of SPIE. 1990, 1303: 178-188.
    [12]
    Mehta P K, Reid P B, Derby E A, et al. A mathematical model for optical smoothing prediction of high-spatial-frequency surface errors[C]//Proc of SPIE. 1999, 3786: 447-459.
    [13]
    Nie Xuqing, Li Shenyi, Shi Feng, et al. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors[J]. Applied Optics, 2014, 53(6): 1020-1027. doi: 10.1364/AO.53.001020
    [14]
    Kim D W, Park W H, An H K, et al. Parametric smoothing model for visco-elastic polishing tools[J]. Optics Express, 2010, 18(21): 22515-22526. doi: 10.1364/OE.18.022515
    [15]
    Kim D W, Martin H, Burge J H. Control of mid-spatial-frequency errors for large steep aspheric surfaces[C]//Optical Fabrication & Testing. 2012.
    [16]
    Shu Yong, Nie Xuqing, Shi Feng, et al. Smoothing evolution model for computer controlled optical surfacing[J]. Journal of Optical Technology, 2014, 81(3): 164-167. doi: 10.1364/JOT.81.000164
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (975) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return