Volume 31 Issue 11
Oct.  2019
Turn off MathJax
Article Contents
Yang Hang, Song Shupiao, Huang Wen, et al. Capability evaluation of self-location machining algorithm for ultra-precision workpiece based on SVD[J]. High Power Laser and Particle Beams, 2019, 31: 112001. doi: 10.11884/HPLPB201931.190261
Citation: Yang Hang, Song Shupiao, Huang Wen, et al. Capability evaluation of self-location machining algorithm for ultra-precision workpiece based on SVD[J]. High Power Laser and Particle Beams, 2019, 31: 112001. doi: 10.11884/HPLPB201931.190261

Capability evaluation of self-location machining algorithm for ultra-precision workpiece based on SVD

doi: 10.11884/HPLPB201931.190261
  • Received Date: 2019-07-09
  • Rev Recd Date: 2019-08-28
  • Publish Date: 2019-11-15
  • In order to further improve the final precision, efficiency and cost-effectiveness of ultra-precision surface modification, and optimize the process direction and process decision-making of ultra-precision self-positioning processing, this paper studies the point cloud fusion process of self-positioning processing algorithm for ultra-precision workpieces. Based on the evaluation, it proposes a self-positioning processing algorithm capability evaluation method based on SVD. Firstly, based on the kinematics method, the matrix representation of point cloud fusion is established. The transformation matrix representation of self-positioning results is established for the translation, rotation and compound motion, respectively.Then the self-positioning point cloud fusion transformation matrix is obtained. A singular value decomposition is performed to obtain a singular value list of the transformation matrix.finally, the largest singular value in the list is used to characterize the self-positioning processing algorithm. By analyzing the free-precision states of a certain type of ultra-precision blade (a total of 1078 sets of free-standing state) it is found that the proposed evaluation index can correctly characterize self-positioning under the condition of independent translation and independent rotation. For the independent translation, the self-positioning processing algorithm can be positioned normally, and the maximum singular deviation value is also less than the pre-set value. For the independent rotation, when the angle is less than 45°, the self-positioning machining can be correctly performed. The singular value difference also approaches zero. Above 45°, the algorithm's self-positioning machining capability deteriorates, and this feature can be correctly captured by the proposed indicators. For the composite motion consisting of translation and rotation, the proposed index shows that about 35% of the cases can be correctly self-positioned, and the rest can not be correctly self-homing. It indicates that the indicators established by the proposed method can correctly characterize the self-positioning machining algorithm.
  • loading
  • [1]
    卢金玲, 郭蕾, 王李科, 等. 半开叶轮离心泵叶顶间隙非定常流动特性研究[J]. 农业机械学报, 2019, 50(6): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201906018.htm

    Lu Jinling, Guo Lei, Wang Like, et al. Unsteady flow characteristics of tip clearance in semi-open impeller centrifugal pump. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 163-172 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201906018.htm
    [2]
    李敏, 袁巨龙, 吴喆, 等. 复杂曲面零件超精密加工方法的研究进展[J]. 机械工程学报, 2015, 51(5): 178-191. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201505022.htm

    Li Min, Yuan Julong, Wu Zhe, et al. Progress in ultra-precision machining methods of complex curved parts. Journal of Mechanical Engineering, 2015, 51(5): 178-191 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201505022.htm
    [3]
    杨航, 刘小雍, 马登秋, 等. 一阶不连续光学元件MRF流体动力学分析方法[J]. 强激光与粒子束, 2019, 31: 022001. doi: 10.11884/HPLPB201931.180340

    Yang Hang, Liu Xiaoyong, Ma Dengqiu, et al. Fluid dynamics analysis method for MRF of first order discontinuous optical elements. High Power Laser and Particle Beams, 2019, 31: 022001 doi: 10.11884/HPLPB201931.180340
    [4]
    Golini D, Jacobs S D, Kordonski W I, et al. Precision optics fabrication using magnetorheological finishing[C]//Proc of SPIE. 1997: 10289OH.
    [5]
    Yin Z, Dai Y, Li S, et al. Fabrication of off-axis aspheric surfaces using a slow tool servo[J]. International Journal of Machine Tools and Manufacture, 2011, 51(5): 404-410. doi: 10.1016/j.ijmachtools.2011.01.008
    [6]
    黎耀军, 张振洲, 严海军, 等. JP75卷盘式喷灌机水涡轮水力性能分析与结构改进设计[J]. 农业机械学报, 2018, 49(1): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201801012.htm

    Li Yaojun, Zhang Zhenzhou, Yan Haijun, et al. Hydraulic performance analysis and optimization for water turbine of JP75 hose reel irrigation machine. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 100-107 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201801012.htm
    [7]
    郭荣, 李仁年, 张人会. 射流离心泵动静叶栅匹配的水力与声学性能优化设计[J]. 农业机械学报, 2019, 50(5): 148-158. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201905017.htm

    Guo Rong, Li Rennian, Zhang Renhui. Optimization design of hydraulic and acoustic performance on matching of rotor and stator of jet centrifugal pump. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 148-158 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201905017.htm
    [8]
    王正, 王增全, 郭凯, 等. 增压器涡轮叶轮极端载荷下动态可靠性模型[J]. 农业机械学报, 2011, 42(7): 32-49. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201107008.htm

    Wang zheng, Wang Zengquan, Guo Kai, et al. Dynamic reliability model of turbine impeller of turbocharger under ultimate load. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7): 32-49 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201107008.htm
    [9]
    Rong Y, Xu J, Sun Y. A surface reconstruction strategy based on deformable template for repairing damaged turbine blades[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(12): 2358-2570.
    [10]
    Shorey A B, Kordonski W, Tricard M. Magnetorheological finishing and subaperture stitching interferometry of large and lightweight optics Proc of SPIE. 2004, 5494: 81-90.
    [11]
    Yau H T, Menq C H. A unified least-squares approach to the evaluation of geometric errors using discrete measurement data[J]. International Journal of Machine Tools and Manufacture, 1996, 36(11): 1269-1290.
    [12]
    Song H C, Song J B. Precision robotic deburring based on force control for arbitrarily shaped workpiece using CAD model matching[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(1): 85-91.
    [13]
    Lasemi A, Xue D, Gu P. Recent development in CNC machining of freeform surfaces: a state-of-the-art review[J]. Computer-Aided Design, 2010, 42(7): 641-654.
    [14]
    Bueno M, Gonz L J, Martnez S N J, et al. Automatic point cloud coarse registration using geometric keypoint descriptors for indoor scenes[J]. Automation in Construction, 2017, 81: 134-148.
    [15]
    Lu M, Zhao J, Guo Y, et al. Accelerated coherent point drift for automatic three-dimensional point cloud registration[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 13(2): 162-166.
    [16]
    Zhao Z, Ding D, Fu Y, et al. Measured data-driven shape-adaptive machining via spatial deformation of tool cutter positions[J]. Measurement, 2019, 135: 244-251.
    [17]
    Wang H, Zhou M X, Zheng W Z, et al. 3D machining allowance analysis method for the large thin-walled aerospace component[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(3): 399-406.
    [18]
    Liu J, Shang X, Yang S, et al. Research on optimization of point cloud registration ICP algorithm //Proceedings of the Pacific-Rim Symposium on Image and Video Technology. 2017.
    [19]
    Pomerleau F, Colas F, Siegwart R. A review of point cloud registration algorithms for mobile robotics[J]. Foundations and Trends in Robotics, 2015, 4(1): 101-104.
    [20]
    Yang J, Li H, Campbell D, et al. Go-ICP: A globally optimal solution to 3D ICP point-set registration[J]. IEEE Trans on pattern analysis and machine intelligence, 2015, 38(11): 2241-2254.
    [21]
    De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition[J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21(4): 1253-1278.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (851) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return