Volume 32 Issue 2
Dec.  2019
Turn off MathJax
Article Contents
Zhang Yadong, Xiong Min, Dong Mingyang, et al. Research of electromagnetic launched fire-extinguishing bomb fire-fighting system[J]. High Power Laser and Particle Beams, 2020, 32: 025023. doi: 10.11884/HPLPB202032.190304
Citation: Zhang Yadong, Xiong Min, Dong Mingyang, et al. Research of electromagnetic launched fire-extinguishing bomb fire-fighting system[J]. High Power Laser and Particle Beams, 2020, 32: 025023. doi: 10.11884/HPLPB202032.190304

Research of electromagnetic launched fire-extinguishing bomb fire-fighting system

doi: 10.11884/HPLPB202032.190304
  • Received Date: 2019-08-16
  • Rev Recd Date: 2019-10-31
  • Publish Date: 2019-12-26
  • This article introduces the severe fire situation in China, and clarifies the limitations of the existing fire-fighting solutions. In view of the limited range and the limitation of the use of pyrotechnics, it is proposed to use the electromagnetic coil launcher to launch the fire-extinguishing bomb to extinguish fire. Based on the current filament circuit model, a 10-stage electromagnetic coil launcher is designed. Pulse capacitor is used as the initial energy source and the coil is discharged sequentially by a crowbar circuit. The 7.2 kg projectile could be accelerated to the maximum speed of 171 m/s and the muzzle speed of 154 m/s. The efficiency will be over 15%. It shows that the electromagnetic coil launcher can meet the launching needs of fire-fighting project's needs. An intelligent unmanned electromagnetic launch fire-fighting system is proposed. The intelligent command and control system dispatches drones to collect fire information, then formulates fire-fighting strategies. The unmanned electromagnetic fire-extinguishing vehicle will be controlled to launch fire-extinguishing bombs to achieve accurate and efficient fire extinguishing. The system will adjust the fire extinguishing plan according to the evaluation results of fire extinguishing efficiency until the task is completed.
  • loading
  • [1]
    王立波. 远程气动灭火炮的结构设计与研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.

    Wang Libo. Structural design and research of long-range pneumatic fire monitor. Harbin: Harbin Engineering University, 2008
    [2]
    银河. BTR-80装甲输送车与GAZ-5903灭火车[J]. 兵器知识, 2001(9):39-39. (Yin He. BTR-80 armored transport vehicle and GAZ-5903 firefighting train[J]. Weapon Knowledge, 2001(9): 39-39
    [3]
    尚科. 灭火巡航导弹[J]. 北方消防, 2003(17):42-42. (Shang Ke. Firefighting cruise missile[J]. Northern fire control, 2003(17): 42-42
    [4]
    王政, 郭林. 支架式气动灭火炮: CN1765432A[P]. 2005-11-09. (Wang Zheng, Guo Lin. Bracket type pneumatic fire monitor: CN1765432A. 2005-11-09)
    [5]
    Remote intelligent forest fire extinguishing system. Mine Warfare and Ship Protection, 2010, (3) : 74-74
    [6]
    何庆国. 某多管车载灭火炮射控系统分析及研究[D]. 南京: 南京理工大学, 2011.

    He Qingguo. Analysis and research on the fire control system of a multi barrel vehicle mounted fire monitor. Nanjing : Nanjing University of Science and Technology, 2011
    [7]
    刘刚. 气动发射式高层建筑灭火炮研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    Liu Gang. Study on pneumatic launching fire extinguishing gun for high buildings. Harbin: Harbin Engineering University, 2012
    [8]
    韩永, 孟宪尉. 灭火弹可“打”300米高楼火灾高层楼宇灭火系统携22项专利亮相北京[J]. 消防与生活, 2014(4):36-36. (Han Yong, Meng Xianwei. The fire-extinguishing system of high-rise buildings with 300 meters high fire can be “hit” by fire bombs with 22 patents appeared in Beijing[J]. Fire and Life, 2014(4): 36-36
    [9]
    赵浩合. 一种新型智能迫击炮灭火弹的设计与研究[D]. 太原: 中北大学, 2017.

    Zhao Haohe. Design and research of a new type of intelligent mortar fire-extinguishing projectile. Taiyuan : Zhongbei University, 2017
    [10]
    张亚东, 刘开培. 电磁动能武器概论[M]. 北京: 兵器工业出版社, 2015.

    Zhang Yadong, Liu kaipei. Introduction to electromagnetic kinetic energy weapons. Beijing : Weapons Industry Press, 2015
    [11]
    Widner M M. WARP-10: A numerical simulation model for the cylindrical reconnection launcher[J]. IEEE Trans Magnetics, 1991, 27(1): 634-638. doi: 10.1109/20.101108
    [12]
    Kaye R, Turman B, Aubuchon M. Induction coilgun for EM mortar[J]. IEEE Trans Magnetics, 2007, 43(1): 1810-1813.
    [13]
    Skurdal B D, Gaigler R L. Multimission electromagnetic launcher[J]. IEEE Trans Magnetics, 2009, 45(1): 458-461. doi: 10.1109/TMAG.2008.2008551
    [14]
    Zhang Tao, Guo Wei, Lin Fuchang. Design and testing of 15-stage synchronous induction coilgun[J]. IEEE Trans Plasma Science, 2013, 41(5): 1089-1093. doi: 10.1109/TPS.2013.2251365
    [15]
    Li Xian, Wang Qiuliang, Wang Housheng. Performance of a four-section linear induction coil launcher prototype[J]. IEEE Trans Plasma Science, 2014, 24(5): 1-5.
    [16]
    牛小波, 刘开培, 张亚东. 基于电流丝法的多级同步感应线圈炮电枢温升计算[J]. 强激光与粒子束, 2015, 27:095001. (Niu Xiaobo, Liu Kaipei, Zhang Yadong. Calculation of armature temperature rise of multistage synchronous induction coil gun based on current wire method[J]. High Power Laser and Particle Beams, 2015, 27: 095001
    [17]
    刘守豹, 阮江军, 彭迎. 改进电流丝法及其在感应线圈炮场路结合分析中的应用[J]. 中国电机工程学报, 2010, 30(30):128-134. (Liu Shoubao, Ruan Jiangjun, Peng Ying. Improved current wire method and its application in the combination analysis of induction coil battery[J]. Chinese Journal of Electrical Engineering, 2010, 30(30): 128-134
    [18]
    Zhang Yadong, Xiao Gang, Gong Yujia. Armature structure research of a synchronous induction coil launcher[J]. IEEE Trans Plasma Science, 2017, 45(7): 1574-1578. doi: 10.1109/TPS.2017.2706270
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (2397) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return