Volume 32 Issue 2
Dec.  2019
Turn off MathJax
Article Contents
Li Xin, Zhao Qiang, Hao Jianhong, et al. Analysis of physical effects of borosilicate glass coverslips irradiated by protons[J]. High Power Laser and Particle Beams, 2020, 32: 025024. doi: 10.11884/HPLPB202032.190325
Citation: Li Xin, Zhao Qiang, Hao Jianhong, et al. Analysis of physical effects of borosilicate glass coverslips irradiated by protons[J]. High Power Laser and Particle Beams, 2020, 32: 025024. doi: 10.11884/HPLPB202032.190325

Analysis of physical effects of borosilicate glass coverslips irradiated by protons

doi: 10.11884/HPLPB202032.190325
  • Received Date: 2019-08-29
  • Rev Recd Date: 2019-12-19
  • Publish Date: 2019-12-26
  • As an important part of the spacecraft power system, solar cells require high conversion efficiency and reliability and a longer service life. By using an anti-irradiation glass coverslip, the protection of the solar cell against particle radiation can be enhanced, the service life of the solar cell can be prolonged, and the spacecraft can obtain a reliable energy supply. Borosilicate glass is an ideal glass cover material for solar cells. In this paper, Monte Carlo method is combined with SRIM software to study the physical mechanism of damage of proton irradiated borosilicate glass. Combining the theory of particles-matters interaction with the basic formula, based on analyzing the stopping power, ionization energy loss and displacement energy loss of protons in different borosilicate glass, and the generation of vacancies, the physical mechanism of the damage was analyzed. The results show that the proton irradiation damage with energy of 30−120 keV mainly occurs on the surface of borosilicate glass; proton deposition and vacancies distribution follow the Bragg curve; ionization energy loss is the main part of energy loss, which increases with the increase of incident energy, leading to ionization and excitation of electrons; displacement energy loss increases with the decrease of energy in the glass, which leads to the vacancy defects of boron, oxygen and silicon. Ionization effect and defects are important reasons for the formation of color center in borosilicate glass.
  • loading
  • [1]
    孙承月. 太阳能电池板玻璃盖片的空间带电粒子环境损伤效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    Sun Chengyue. An investigation on the space charged particale environmental effects of the cover-glass for solar cell[D]. Harbin: Harbin Institute of Technology, 2007)
    [2]
    高剑锋, 张恒. 空间太阳电池抗辐照研究[J]. 电源技术, 2017, 41(7):1100-1103. (Gao Jianfeng, Zhang Heng. Anti-irradiation research of space solar cells[J]. Chinese Journal of Power Sources, 2017, 41(7): 1100-1103 doi: 10.3969/j.issn.1002-087X.2017.07.046
    [3]
    邓力. 国内外特种玻璃研发与应用新动态[J]. 玻璃与搪瓷, 2018, 46(1):38-48. (Dengli. The recent tendency of development and application of special glasses at home and abroad[J]. Glass & Ename, 2018, 46(1): 38-48
    [4]
    万军鹏, 程金树, 汤李缨, 等. 浅谈硼硅酸盐玻璃的应用现状和发展趋势[J]. 玻璃, 2004, 31(5):21-25. (Wan Junpeng, Cheng Jinshu, Tang Liying, et al. The application state and development trend of borosilicate glass[J]. Glass, 2004, 31(5): 21-25 doi: 10.3969/j.issn.1003-1987.2004.05.004
    [5]
    彭海波, 刘枫飞, 张冰焘, 等. Xe离子束辐照硼硅酸盐玻璃和石英玻璃效应对比研究[J]. 物理学报, 2018, 67(3):252-260. (Peng Haibo, Liu Fengfei, Zhang Bingtao, et al. Comparative studies of irradiation effects in borosilicate glass and fused silica irradiated by energetic Xe ions[J]. Acta Physica Sinica, 2018, 67(3): 252-260
    [6]
    王铁山, 张多飞, 陈亮, 等. 辐照导致硼硅酸盐玻璃机械性能变化[J]. 物理学报, 2017, 66(2):269-276. (Wang Tieshan, Zhang Duofei, Chen Liang, et al. Irradiation-induced modifications in the mechanical properties of borosilicate glass[J]. Acta Physica Sinica, 2017, 66(2): 269-276
    [7]
    王庆艳, 耿洪滨, 李兴冀, 等. 低能质子辐射硬质硼硅玻璃的模拟计算[J]. 哈尔滨工业大学学报, 2011, 43(1):7-11. (Wang Qingyan, Geng Hongbin, Li Xingji, et al. Simulation of radiation effects on hard borosilicate glass by low-energy protons[J]. Journal of Harbin Institute of Technology, 2011, 43(1): 7-11 doi: 10.11918/j.issn.0367-6234.2011.01.002
    [8]
    Ziegler J F, Biersack J P, Ziegler M D. SRIM–The stopping and range of ions in matter[M]. North Carolina: Lulu Press Co, 2008.
    [9]
    汤家镛, 张祖华. 离子在固体中的阻止本领、射程和沟道效应[M]. 北京: 原子能出版社, 1988.

    Tang Jiayong, Zhang Zuhua. The stopping power, range and channel effect of ions in solids[M]. Beijing: Atomic Energy Press, 1988
    [10]
    王同权. 高能质子辐射效应研究[D]. 长沙: 国防科学技术大学, 2003.

    Wang Tongquan. The research on the radiation effects induced by high-energy proton[D]. Changsha: National University of Defense Technology, 2007
    [11]
    乔松林. α粒子输运的数值模拟[D]. 绵阳: 中国工程物理研究院, 2005.

    Qiao Songlin. Numerical simulation of α particle transport[D]. Mianyang: China Academy of Engineering Physics, 2005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (1526) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return