Volume 33 Issue 5
May  2021
Turn off MathJax
Article Contents
Zhao Zhengyuan, Liu Wenxin, Yang Longlong, et al. Design of high frequency system of 0.34 THz high order mode two-beam folded waveguide traveling wave tube[J]. High Power Laser and Particle Beams, 2021, 33: 053004. doi: 10.11884/HPLPB202133.210002
Citation: Zhao Zhengyuan, Liu Wenxin, Yang Longlong, et al. Design of high frequency system of 0.34 THz high order mode two-beam folded waveguide traveling wave tube[J]. High Power Laser and Particle Beams, 2021, 33: 053004. doi: 10.11884/HPLPB202133.210002

Design of high frequency system of 0.34 THz high order mode two-beam folded waveguide traveling wave tube

doi: 10.11884/HPLPB202133.210002
  • Received Date: 2021-01-04
  • Rev Recd Date: 2021-03-28
  • Available Online: 2021-04-16
  • Publish Date: 2021-05-20
  • High frequency system is the key part of folded-waveguide (FW) traveling-wave tube (TWT), it will directly affect the operating frequency, bandwidth, gain and other indicators of TWT. In order to obtain larger output power and higher gain than a conventional single-beam FWTWT, the basic characteristics of the 0.34 THz high order mode two-beam FWTWT are studied. Firstly, the dispersion characteristics and interaction impedance of two-beam FW are calculated and compared with the results of simulation. The results show that the theory of dispersion characteristics is consistent with the simulation results and the interaction impedance matches well in high frequency band. CST studio suite is used to simulate the beam-wave interaction of the two-beam FW, and the output power is 41.68 W. In order to obtain high output, the height of the straight is increased. And the 63.12 W output is obtained with an increase of 52.7%. High frequency system is constituted by mode converter and output window structure, and good transmission characteristics are obtained within 25 GHz bandwidth. In the operating bandwidth, |S11| is greater than 15 dB, |S21| is less than 4.5 dB.
  • loading
  • [1]
    Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928. doi: 10.1109/22.989974
    [2]
    Kreischer K E, Tucek J C, Basten M A, et al. 220 GHz power amplifier testing at northrop grumman[C]//2013 IEEE 14th International Vacuum Electronics Conference. 2013.
    [3]
    Basten M, Tucek J, Gallagher D, et al. A multiple electron beam array for a 220 GHz amplifier[C]//2009 IEEE International Vacuum Electronics Conference. 2009.
    [4]
    Li Ke, Liu Wenxin, Wang Yong, et al. A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier[J]. Physics of Plasmas, 2015, 22: 043115. doi: 10.1063/1.4917526
    [5]
    高鹏鹏, 刘文鑫, 张兆传. 双电子注高次模折叠波导慢波结构注波互作用仿真分析[J]. 真空科学与技术学报, 2018, 38(6):465-471. (Gao Pengpeng, Liu Wenxin, Zhang Zhaochuan. Simulation of beam-wave interaction of newly-designed two electron beams higher order mode folded waveguide slow wave structure[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(6): 465-471
    [6]
    祝方芳, 刘文鑫. 0.22 THz折叠波导行波管输出窗的仿真设计与实验研究[J]. 真空科学与技术学报, 2017, 37(10):997-1002. (Zhu Fangfang, Liu Wenxin. Design of output window for 0.22 THz folded waveguide travelling wave tube: a simulation and experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(10): 997-1002
    [7]
    高鹏鹏. 太赫兹双电子注折叠波导慢波结构注-波互作用研究[D]. 北京: 中国科学院大学, 2018.

    Gao Pengpeng. Research on the beam-wave interaction of terahertz two electron beams folded waveguide slow wave structure[D]. Beijing: University of Chinese Academy of Sciences, 2018
    [8]
    王士龙, 薛谦忠. 220 GHz三注折叠波导慢波电路的设计与仿真[J]. 真空科学与技术学报, 2017, 37(2):206-210. (Wang Shilong, Xue Qianzhong. Design and simulation of 220 GHz three-beam folded waveguide slow-wave circuit[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(2): 206-210
    [9]
    Liu Wenxin, Zhang Zhiqiang, Liu Weihao, et al. Demonstration of a high-power and wide-bandwidth G-band traveling wave tube with cascade amplification[J]. IEEE Electron Device Letters, 2021, 42(4): 593-596. doi: 10.1109/LED.2021.3057106
    [10]
    颜胜美. 多注太赫兹折叠波导行波管技术研究[D]. 绵阳: 中国工程物理研究院, 2015.

    Yan Shengmei. Research on the technology of multistream Terahertz folded Waveguide TWT[D]. Mianyang: China Academy of Engineering Physics, 2015
    [11]
    颜胜美, 苏伟, 王亚军, 等. 并行多注THz折叠波导行波管的理论分析与数值模拟[J]. 强激光与粒子束, 2014, 26:083105. (Yan Shengmei, Su Wei, Wang Yajun, et al. Theoretical analysis and numerical simulation of parallel multi-beam THz folded waveguide traveling-wave tube[J]. High Power Laser and Particle Beams, 2014, 26: 083105 doi: 10.11884/HPLPB201426.083105
    [12]
    徐翱, 周泉丰, 阎磊, 等. 0.34 THz折叠波导行波管设计及流通管实验[J]. 太赫兹科学与电子信息学报, 2014, 12(2):153-157. (Xu Ao, Zhou Quanfeng, Yan Lei, et al. Design of 0.34 THz folded Waveguide TWT and runner pipe experiment[J]. Journal of Terahertz Science and Electronic Information Technology, 2014, 12(2): 153-157
    [13]
    李科. 基于折叠波导慢波结构的双电子注太赫兹辐射源研究[D]. 北京: 中国科学院大学, 2016.

    Li Ke. Investigation of the terahertz resource bases on two-beam folded waveguide slow wavve structure[D]. Beijing: University of Chinese Academy of Sciences, 2016
    [14]
    高鹏鹏, 张兆传, 刘文鑫, 等. G波段双注折叠波导行波管的注-波互作用特性[J]. 太赫兹科学与电子信息学报, 2018, 16(4):571-575. (Gao Pengpeng, Zhang Zhaochuan, Liu Wenxin, et al. Beam-wave interaction characteristics of G-band two-beam folded waveguide traveling wave tube[J]. Jouranl of Terahertz Science and Electronic Information Technology, 2018, 16(4): 571-575
    [15]
    Booske J H, Converse M C, Kory C L, et al. Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes[J]. IEEE Transactions on Electron Devices, 2005, 52(5): 685-694. doi: 10.1109/TED.2005.845798
    [16]
    张长青, 宫玉彬, 魏彦玉, 等. 亚毫米波折叠波导慢波结构的损耗特性研究[J]. 半导体光电, 2010, 31(6):880-884, 944. (Zhang Changqing, Gong Yubin, Wei Yanyu, et al. Investigation on loss characteristics of the sub-millimeter wave folded waveguide slow-wave circuit[J]. Semiconductor Optoelectronics, 2010, 31(6): 880-884, 944
    [17]
    樊孝年, 邬显平. 螺旋线慢波结构损耗特性研究[J]. 真空电子技术, 2000(3):1-9. (Fan Xiaonian, Wu Xianping. The study on the loss characteristics of helical slow wave structure[J]. Vacuum Electronics, 2000(3): 1-9
    [18]
    廖华. 太赫兹双注过模折叠波导慢波结构的注-波互作用研究[D]. 北京: 中国科学院大学, 2017.

    Liao Hua. Investigation of the internation of beam-wave based on two-beams overmoded folded waveguide slow wave structure[D]. Beijing: University of Chinese Academy of Sciences, 2017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article views (919) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return