Volume 33 Issue 5
May  2021
Turn off MathJax
Article Contents
Zhong Jinyu, Liu Qiang, Yan Liping, et al. JASMIN-based fast shielding effectiveness prediction of enclosure containing thin composite layer[J]. High Power Laser and Particle Beams, 2021, 33: 053003. doi: 10.11884/HPLPB202133.210048
Citation: Zhong Jinyu, Liu Qiang, Yan Liping, et al. JASMIN-based fast shielding effectiveness prediction of enclosure containing thin composite layer[J]. High Power Laser and Particle Beams, 2021, 33: 053003. doi: 10.11884/HPLPB202133.210048

JASMIN-based fast shielding effectiveness prediction of enclosure containing thin composite layer

doi: 10.11884/HPLPB202133.210048
  • Received Date: 2021-02-08
  • Rev Recd Date: 2021-04-05
  • Available Online: 2021-04-26
  • Publish Date: 2021-05-20
  • The subgridding boundary condition (SGBC) based modeling of thin composite layer in Finite-Difference Time-Domain (FDTD) simulation of enclosures breaks the constraint that the mesh size should be less than the smallest dimension of thin composite layer to get more accurate results, and therefore greatly reduce the computational cost. A large-scale parallelization platform JASMIN based modeling method of SGBC-FDTD was developed. The thin composite layer can be automatically modeled and adaptively allocated in the developed parallelized SGBC-FDTD code. The parallelized SGBC-FDTD algorithm was used to analyze the electromagnetic shielding effectiveness of enclosures containing composite thin layers with different electromagnetic properties in the frequency range of 0.1−1.0 GHz. The results show that shielding effectiveness predicted using the parallelized SGBC-FDTD algorithm are in good agreement with the ones calculated by a full-wave analysis software, while the calculation efficiency is significantly improved.
  • loading
  • [1]
    Wang Jianbao, Zhou Bihua, Shi Lihua, et al. Analyzing the electromagnetic performances of composite materials with the FDTD method[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(5): 2646-2654. doi: 10.1109/TAP.2013.2242824
    [2]
    王富强, 马晨, 王东红, 等. 屏蔽复合材料设备舱电磁脉冲屏蔽效能[J]. 强激光与粒子束, 2015, 27:103245. (Wang Fuqiang, Ma Chen, Wang Donghong, et al. Electromagnetic pulse shielding effectiveness of the conductive composites equipment compartment[J]. High Power Laser and Particle Beams, 2015, 27: 103245 doi: 10.11884/HPLPB201527.103245
    [3]
    孟雪松, 鲍献丰, 刘德赟, 等. 嵌入式薄片模型在时域有限差分算法中的应用[J]. 强激光与粒子束, 2017, 29:123203. (Meng Xuesong, Bao Xianfeng, Liu Deyun, et al. Embedded thin film model in finite difference time domain method[J]. High Power Laser and Particle Beams, 2017, 29: 123203 doi: 10.11884/HPLPB201729.170196
    [4]
    葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 3版. 西安: 西安电子科技大学出版社, 2011.

    Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves[M]. 3rd ed. Xi’an: Xidian University Press, 2011
    [5]
    Maloney J G, Smith G S. The use of surface impedance concepts in the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(1): 38-48. doi: 10.1109/8.123351
    [6]
    Feliziani M, Maradei F, Tribellini G. Field analysis of penetrable conductive shields by the finite-difference time-domain method with impedance network boundary conditions (INBCs)[J]. IEEE Transactions on Electromagnetic Compatibility, 1999, 41(4): 307-319. doi: 10.1109/15.809801
    [7]
    Sarto M S. A new model for the FDTD analysis of the shielding performances of thin composite structures[J]. IEEE Transactions on Electromagnetic Compatibility, 1999, 41(4): 298-306. doi: 10.1109/15.809798
    [8]
    Meng Xuesong, Vukovic A, Benson T M, et al. Extended capability models for Carbon Fiber Composite (CFC) panels in the Unstructured Transmission Line Modeling (UTLM) method[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 811-819. doi: 10.1109/TEMC.2016.2531791
    [9]
    Cabello M R, Angulo L D, Alvarez J, et al. A hybrid Crank-Nicolson FDTD subgridding boundary condition for lossy thin-layer modeling[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1397-1406. doi: 10.1109/TMTT.2016.2637348
    [10]
    Meng Xuesong. Modelling multi-scale problems in the transmission line modelling method[D]. Nottingham, U K: University of Nottingham, 2014.
    [11]
    Zhu Hui, Gao Cheng, Chen Hailin. An unconditionally stable radial point interpolation method based on Crank-Nicolson scheme[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16(99): 393-395.
    [12]
    Cabello M R, Angulo L D, Alvarez J, et al. Subgridding boundary conditions to model arbitrarily dispersive thin planar materials[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6424-6434.
    [13]
    莫则尧, 张爱清. 并行自适应结构网格应用支撑软件框架(JASMIN 2.0版)用户指南[M]. 2011.

    Mo Zeyao, Zhang Aiqing. User guide of J parallel adaptive structured mesh applications infrastructure (JASMIN 2.0)[Z]. 2011
    [14]
    张青洪, 廖成, 李瀚宇, 等. 基于JASMIN框架的抛物方程有限差分解法并行计算及其应用[J]. 强激光与粒子束, 2015, 27:083204. (Zhang Qinghong, Liao Cheng, Li Hanyu, et al. Parallel computing of finite difference algorithm for parabolic equation based on JASMIN and its application[J]. High Power Laser and Particle Beams, 2015, 27: 083204 doi: 10.11884/HPLPB201527.083204
    [15]
    李俊辛, 刘强, 闫丽萍, 等. 基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用[J]. 强激光与粒子束, 2019, 31:053202. (Li Junxin, Liu Qiang, Yan Liping, et al. JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction[J]. High Power Laser and Particle Beams, 2019, 31: 053202 doi: 10.11884/HPLPB201931.190026
    [16]
    Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting[J]. IEEE Transactions on Power Delivery, 1999, 14(3): 1052-1061. doi: 10.1109/61.772353
    [17]
    方明江, 刘强, 闫丽萍, 等. 含三维复杂工程细缝金属腔的电磁屏蔽效能评估[J]. 强激光与粒子束, 2018, 30:073201. (Fang Mingjiang, Liu Qiang, Yan Liping, et al. Evaluation of electromagnetic shielding effectiveness for metallic enclosure with three-dimensional complex thin slots[J]. High Power Laser and Particle Beams, 2018, 30: 073201 doi: 10.11884/HPLPB201830.180047
    [18]
    Elmahgoub K, Elsherbeni A Z, Yang Fan. Dispersive periodic boundary conditions for finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(4): 2118-2122. doi: 10.1109/TAP.2012.2186243
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views (1068) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return