Volume 33 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Lan Ziyue, Pan Kaiqiang, Yang Dong, et al. Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe[J]. High Power Laser and Particle Beams, 2021, 33: 112001. doi: 10.11884/HPLPB202133.210104
Citation: Lan Ziyue, Pan Kaiqiang, Yang Dong, et al. Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe[J]. High Power Laser and Particle Beams, 2021, 33: 112001. doi: 10.11884/HPLPB202133.210104

Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe

doi: 10.11884/HPLPB202133.210104
  • Received Date: 2021-03-23
  • Rev Recd Date: 2021-11-05
  • Available Online: 2021-11-11
  • Publish Date: 2021-11-15
  • This paper uses the two-dimensional particle-in-cell simulation program EPOCH to verify the feasibility of the relativistic electron beam probe in diagnosing the electrostatic wave generated by stimulated Raman scattering. The results show that the electron beam probe will produce density modulation in the transverse direction of the electron beam probe after passing through the electrostatic wave’s electric field. The density modulation is periodically distributed and moves along the propagation direction of the electrostatic wave. The wavenumber of the density modulation corresponds to the wavenumber of the electrostatic wave. And the moving speed corresponds to the phase speed of the electrostatic wave, so it can be used to deduce the temperature and density of electrons under certain conditions. In the process of diagnosing electrostatic waves, the beam length of the electron beam probe must be shorter than the wavelength of the electrostatic wave or the exposure time of the diagnostic equipment must be less than the period of the electrostatic wave. The research in this paper provides a new method of directly diagnosing the temperature and density of electrostatic waves and electrons, which is of great significance for promoting the experimental research of stimulated Raman scattering and other laser plasma instabilities.
  • loading
  • [1]
    张钧, 常铁强. 激光核聚变靶物理基础[M]. 北京: 国防工业出版社, 2004: 40-41

    Zhang Jun, Chang Tieqiang. Fundaments of the target physics for laser fusion[M]. Beijing: National Defense Industry Press, 2004: 40-41
    [2]
    Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. The Physics of Fluids, 1975, 18(8): 1002-1016. doi: 10.1063/1.861248
    [3]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [4]
    Hinkel D E, Callahan D A, Meezan N B, et al. Analyses of laser-plasma interactions in NIF ignition emulator designs[J]. Journal of Physics:Conference Series, 2010, 244: 022019. doi: 10.1088/1742-6596/244/2/022019
    [5]
    Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [6]
    Baldis H S, Campbell E M, Kruer W L. Physics of laser plasmas[M]. New York: North-Holland, 1991.
    [7]
    王传珂, 蒋小华, 王哲斌, 等. 神光II激光装置的全口径背向散射测量系统[J]. 强激光与粒子束, 2010, 22(8):1896-1900. (Wang Chuanke, Jiang Xiaohua, Wang Zhebin, et al. Full-aperture backscatter station on Shenguang-II Laser Facility[J]. High Power Laser and Particle Beams, 2010, 22(8): 1896-1900 doi: 10.3788/HPLPB20102208.1896
    [8]
    MacGowan B J, Afeyan B B, Back C A, et al. Laser-plasma interactions in ignition-scale hohlraum plasmas[J]. Physics of Plasmas, 1996, 3(5): 2029-2040. doi: 10.1063/1.872000
    [9]
    王传珂, 蒋小华, 刘慎业, 等. 2ns, 351 nm激光黑腔靶受激Raman散射实验研究[J]. 强激光与粒子束, 2006, 18(7):1113-1116. (Wang Chuanke, Jiang Xiaohua, Liu Shenye, et al. Stimulated Raman scattering from interaction of 2 ns, 351 nm laser with hohlraum[J]. High Power Laser and Particle Beams, 2006, 18(7): 1113-1116
    [10]
    郝亮, 刘占军, 胡晓燕, 等. 黑腔等离子体中SRS与SBS过程的散射光谱分析[J]. 强激光与粒子束, 2015, 27:032004. (Hao Liang, Liu Zhanjun, Hu Xiaoyan, et al. Analysis of backscattered light spectra of SRS and SBS in hohlraum plasma[J]. High Power Laser and Particle Beams, 2015, 27: 032004 doi: 10.11884/HPLPB201527.032004
    [11]
    Glenzer S H, Back C A, Estabrook K G, et al. Observation of two ion-acoustic waves in a two-species laser-produced plasma with Thomson scattering[J]. Physical Review Letters, 1996, 77(8): 1496-1499. doi: 10.1103/PhysRevLett.77.1496
    [12]
    Glenzer S H, Back C A, Suter L J, et al. Thomson scattering from inertial-confinement-fusion hohlraum plasmas[J]. Physical Review Letters, 1997, 79(7): 1277-1280. doi: 10.1103/PhysRevLett.79.1277
    [13]
    Glenzer S H, Roznus W, MacGowan B J, et al. Thomson scattering from high-Z laser-produced plasmas[J]. Physical Review Letters, 1999, 82(1): 97-100. doi: 10.1103/PhysRevLett.82.97
    [14]
    李志超, 赵航, 龚韬, 等. 激光惯性约束聚变中光学汤姆逊散射研究进展[J]. 强激光与粒子束, 2020, 32:092004. (Li Zhichao, Zhao Hang, Gong Tao, et al. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 092004
    [15]
    Kline J L, Montgomery D S, Bezzerides B, et al. Observation of a transition from fluid to kinetic nonlinearities for Langmuir waves driven by stimulated Raman backscatter[J]. Physical Review Letters, 2005, 94: 175003. doi: 10.1103/PhysRevLett.94.175003
    [16]
    Rousseaux C, Gremillet L, Casanova M, et al. Transient development of backward stimulated Raman and Brillouin scattering on a picosecond time scale measured by subpicosecond Thomson diagnostic[J]. Physical Review Letters, 2006, 97: 015001. doi: 10.1103/PhysRevLett.97.015001
    [17]
    Zhang C J, Hua J F, Xu X L, et al. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe[J]. Scientific Reports, 2016, 6: 29485. doi: 10.1038/srep29485
    [18]
    Li C K, Séguin F H, Rygg J R, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 2008, 100: 225001. doi: 10.1103/PhysRevLett.100.225001
    [19]
    张超杰. 基于超快电子探针的等离子体尾波场成像研究[D]. 北京: 清华大学工程物理系, 2016

    Zhang Chaojie. Probing wakefield structures in plasma based accelerators using femtosecond relativistic electron probes[D]. Beijing: Department of Engineering Physics in Tsinghua University, 2016
    [20]
    Ward R, Sircombe N J. Fast particle Bremsstrahlung effects in the PIC code EPOCH: enhanced diagnostics for laser-solid interaction modelling[R]. University of Warwick, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (686) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return