Volume 33 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Lü Jun, Hao Baoliang, Kou Jianyong, et al. Study on slow wave structure and interaction of 2−18 GHz ultra-wide band traveling-wave tube[J]. High Power Laser and Particle Beams, 2021, 33: 113001. doi: 10.11884/HPLPB202133.210412
Citation: Lü Jun, Hao Baoliang, Kou Jianyong, et al. Study on slow wave structure and interaction of 2−18 GHz ultra-wide band traveling-wave tube[J]. High Power Laser and Particle Beams, 2021, 33: 113001. doi: 10.11884/HPLPB202133.210412

Study on slow wave structure and interaction of 2−18 GHz ultra-wide band traveling-wave tube

doi: 10.11884/HPLPB202133.210412
  • Received Date: 2021-09-20
  • Rev Recd Date: 2021-11-10
  • Available Online: 2021-11-22
  • Publish Date: 2021-11-15
  • The high-frequency slow-wave structure of 2−18 GHz ultra-wideband traveling-wave tube (TWT) is studied and analyzed to meet the requirements of modern information warfare for TWT. Based on the traditional wideband TWT, the positive dispersion characteristics of non-fin loading section were introduced to realize the 2−18 GHz ultra-wideband high-frequency slow wave structure, with the maximum bandwidth of 9∶1. Results show that the output power of fundamental wave is up to 100 W, the second harmonic suppression ratio is better than −3 dBc in the full frequency band, and the second harmonic suppression ratio is better than −5 dBc at 2 GHz, which provides a theoretical basis for the design of ultra-wideband high-power devices. At the same time, the spiral pitch at the output end is adjusted to a positive gradient distribution to further optimize the low frequency secondary wave suppression ratio and improve the saturation output power of the high frequency band.
  • loading
  • [1]
    Gilmour A S. 速调管、行波管、磁控管、正交场放大器和回旋管[M]. 丁耀根, 张兆传, 译. 北京: 国防工业出版社, 2012

    GilmourAS. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers and gyrotrons[M]. Ding Yaogen, Zhang Zhaochuan, trans. Beijing: National Defense Industry Press, 2012
    [2]
    VED IPP. Rethinking what we know about vacuum electronic devices[J]. The Journal of Electronic Defense, 2019, 42(2): 1-4.
    [3]
    Levush B. The design and manufacture of vacuum electronic amplifiers: progress and challenges[C]//Proceedings of 2019 International Vacuum Electronics Conference. 2019: 1-5.
    [4]
    李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32:073001. (Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 073001
    [5]
    王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术, 2019(2):1-7. (Wang Bin, Wang Fengyan, Zhou Xu, et al. Application and development trend of TWTs and MPMs[J]. Vacuum Electronics, 2019(2): 1-7
    [6]
    Seo W B, Kim H J, Joo J H, et al. Fabrication and experiments on a 6-18 GHz, vaned helix TWT amplifier[C]//Proceedings of 2006 IEEE International Vacuum Electronics Conference Held Jointly with 2006 IEEE International Vacuum Electron Sources. 2006: 187-188.
    [7]
    Ghosh T K, Challis A J, Tokeley A, et al. Design and development of 2 to 3 octave band helix mini-TWTs[C]//Proceedings of 2011 IEEE International Vacuum Electronics Conference. 2011.
    [8]
    Wei Yixue, Gan Yuan, Chen Yinxing, et al. A 50-W broadband mini-MPM for electronic countermeasure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2206-2211. doi: 10.1109/TED.2018.2791723
    [9]
    雷禄容, 袁欢, 刘振帮, 等. 宽带相对论速调管放大器模拟设计[J]. 强激光与粒子束, 2016, 28:023003. (Lei Lurong, Yuan Huan, Liu Zhenbang, et al. Design of broadband relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28: 023003 doi: 10.11884/HPLPB201628.023003
    [10]
    Sumathy M, Gupta S K, Kumar B, et al. Cold circuit analysis of a coupled-cavity slow wave structure for mm-wave TWT[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3024-3029. doi: 10.1109/TPS.2020.3015513
    [11]
    胡玉禄. 行波管注波互作用基础理论与CAD技术研究[D]. 成都: 电子科技大学, 2011: 55-75

    Hu Yulu. Study of beam wave interaction basic theory and CAD technique for traveling wave tube[D]. Chengdu: University of Electronic Science and Technology of China, 2011: 55-75
    [12]
    Frisoni M A. Theoretical design study of a 2-18 GHz bandwidth helix TWT (Traveling Wave Tube) amplifier[R]. BADC-TR-87-22, 1987.
    [13]
    罗健. 行波管的正向设计理论及技术研究[D]. 成都: 电子科技大学, 2015: 15-30

    Luo Jian. Research on theory and forward design technology of TWTs[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 15-30
    [14]
    Hu Yulu, Wang Yanmei, Yang Zhonghai, et al. Study the effect of positive dispersion in input circuit of broadband helix traveling wave tubes[C]//Proceedings of the IEEE 14th International Vacuum Electronics Conference. 2013.
    [15]
    Srivastava V, Carter R G, Ravinder B, et al. Design of helix slow-wave structures for high efficiency TWTs[J]. IEEE Transactions on Electron Devices, 2000, 47(12): 2438-2443. doi: 10.1109/16.887034
    [16]
    Xu Li, Yang Zhonghai, Li Bin, et al. High-frequency circuit simulator: an advanced three-dimensional finite-element electromagnetic-simulation tool for microwave tubes[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 1141-1151. doi: 10.1109/TED.2009.2016078
    [17]
    刘盛纲, 李宏福, 王文祥, 等. 微波电子学导论[M]. 北京: 国防工业出版社, 1995: 161-184

    Liu Shenggang, Li Hongfu, Wang Wenxiang, et al. Introduction to microwave electronics[M]. Beijing: National Defense Industry Press, 1995: 161-184
    [18]
    杜秉初, 汪健如. 电子光学[M]. 北京: 清华大学出版社, 2002: 400-422

    Du Bingchu, Wang Jianru. Electron optics[M]. Beijing: Tsinghua University Press, 2002: 400-422
    [19]
    Ghosh T K, Challis A J, Jacob A, et al. Design of helix pitch profile for broadband traveling-wave tubes[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 1135-1140. doi: 10.1109/TED.2009.2015137
    [20]
    Ghosh T K, Challis A J, Jacob A, et al. Improvements in performance of broadband helix traveling-wave tubes[J]. IEEE Transactions on Electron Devices, 2008, 55(2): 668-673. doi: 10.1109/TED.2007.913006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views (1509) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return