Volume 33 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Hu Jiaqi, Li Zhenyu, Wang Zuxin, et al. Design of low-scattering transmissive lens based on integration of absorption with focusing[J]. High Power Laser and Particle Beams, 2021, 33: 103005. doi: 10.11884/HPLPB202133.210169
Citation: Hu Jiaqi, Li Zhenyu, Wang Zuxin, et al. Design of low-scattering transmissive lens based on integration of absorption with focusing[J]. High Power Laser and Particle Beams, 2021, 33: 103005. doi: 10.11884/HPLPB202133.210169

Design of low-scattering transmissive lens based on integration of absorption with focusing

doi: 10.11884/HPLPB202133.210169
  • Received Date: 2021-05-08
  • Rev Recd Date: 2021-08-10
  • Available Online: 2021-09-04
  • Publish Date: 2021-10-15
  • Based on the integration of a transmissive metasurface lens with the circuit analog absorber, the design of a microwave composite material with characteristics of both transmissive wavefront conversion and out-of-band radar cross-section reduction is proposed and examined. With the refraction tuned by gradient phase compensation, the lens consisting of sub-wavelength spaced layers of periodic inclusions exhibits a reciprocal conversion between planar and spherical wavefronts. Moreover, the responses of the lens at the lower side of the wavefront conversion band are used to construct a circuit analog absorption profile containing one lossy layer. By using an aperture-coupled microstrip patch antenna element as the primary feeding antenna, main lobe gain enhancement over a wide band is observed as a result of the wavefront conversion of the composite material. In comparison with the lens, the introduction of the circuit analog absorption profile produces radar cross-section reduction over the bandwidths of 130.68% and 155.11% for TE and TM polarizations, respectively. The full-wave simulation and experimental measurement demonstrate the enhanced radiation gain and reduced radar cross-section and illustrate the validity of the composite material design with integrated absorption and focusing.
  • loading
  • [1]
    Munk B A. Frequency selective surfaces: Theory and design[M]. New York: John Wiley & Sons, 2000.
    [2]
    Chiu C N, Kuo C H, Lin M S. Bandpass shielding enclosure design using multipole-slot arrays for modern portable digital devices[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(4): 895-904. doi: 10.1109/TEMC.2008.2004560
    [3]
    Wang Linbiao, See K Y, Zhang Junwu, et al. Ultrathin and flexible screen-printed metasurfaces for EMI shielding applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(3): 700-705. doi: 10.1109/TEMC.2011.2159509
    [4]
    王向峰, 高炳攀, 任志英, 等. 一体化曲面共形频率选择表面雷达罩[J]. 光学 精密工程, 2018, 26(6):1362-1369. (Wang Xiangfeng, Gao Binpan, Ren Zhiying, et al. Integrated curved-surface conformal frequency selective surface radome[J]. Optics and Precision Engineering, 2018, 26(6): 1362-1369 doi: 10.3788/OPE.20182606.1362
    [5]
    李姣, 乔学增, 骆兴芳. 一种多频段可调复合单元频率选择表面的设计[J]. 电子测量技术, 2010, 33(12):24-28. (Li Jiao, Qiao Xuezeng, Luo Xingfang. Design of frequency selective surfaces with adjustable compounded unit cell and multi-band[J]. Electronic Measurement Technology, 2010, 33(12): 24-28 doi: 10.3969/j.issn.1002-7300.2010.12.007
    [6]
    王珊珊, 高劲松, 梁凤超, 等. 多频段十字分形频率选择表面[J]. 物理学报, 2011, 60:050703. (Wang Shanshan, Gao Jinsong, Liang Fengchao, et al. Multiband fractal cross dipole frequency selective surface[J]. Acta Physica Sinica, 2011, 60: 050703
    [7]
    Yadav S, Jain C P, Sharma M M. Smartphone frequency shielding with penta-bandstop FSS for security and electromagnetic health applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(3): 887-892. doi: 10.1109/TEMC.2018.2839707
    [8]
    Sampath S S, Sivasamy R. A single-layer UWB frequency-selective surface with band-stop response[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(1): 276-279. doi: 10.1109/TEMC.2018.2886285
    [9]
    Yin Weiyang, Zhang Hou, Zhong Tao, et al. Ultra-miniaturized low-profile angularly-stable frequency selective surface design[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(4): 1234-1238. doi: 10.1109/TEMC.2018.2881161
    [10]
    Sampath S S, Sivasamy R, Kumar K J J. A novel miniaturized polarization independent band-stop frequency selective surface[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(5): 1678-1681. doi: 10.1109/TEMC.2018.2869664
    [11]
    郑光明, 王雪纯, 汪岩. 小型化宽阻带多层宽带频率选择表面研究[J]. 华中科技大学学报(自然科学版), 2020, 48(8):57-60. (Zheng Guangming, Wang Xuechun, Wang Yan. Study on miniaturized ultra wide stopband multilayer broadband frequency selective surface[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2020, 48(8): 57-60 doi: 10.13245/j.hust.200810
    [12]
    Paiva S B, Neto V P S, D'Assunção A G. A new compact, stable, and dual-band active frequency selective surface with closely spaced resonances for wireless applications at 2.4 and 2.9 GHz[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 691-697. doi: 10.1109/TEMC.2019.2918568
    [13]
    Sivasamy R, Moorthy B, Kanagasabai M, et al. A wideband frequency tunable FSS for electromagnetic shielding applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 280-283. doi: 10.1109/TEMC.2017.2702572
    [14]
    Ghosh S, Srivastava K V. Broadband polarization-insensitive tunable frequency selective surface for wideband shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 166-172.
    [15]
    Zhang Liang, Yang Guohui, Wu Qun, et al. A novel active frequency selective surface with wideband tuning range for EMC purpose[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4534-4537.
    [16]
    薛凤至, 伍瑞新, 徐成, 等. 利用小型化频率选择表面实现宽带电磁透明[J]. 压电与声光, 2019, 41(4):465-468. (Xue Fengzhi, Wu Ruixin, Xu Cheng, et al. Using miniaturized frequency selective surface to realize broadband electromagnetic transparency[J]. Piezoelectrics & Acoustooptics, 2019, 41(4): 465-468 doi: 10.11977/j.issn.1004-2474.2019.04.001
    [17]
    Choi W H, Shin J H, Song T H, et al. Design of circuit-analog (CA) absorber and application to the leading edge of a wing-shaped structure[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(3): 599-607. doi: 10.1109/TEMC.2013.2290057
    [18]
    He Yun, Feng Weisen, Guo Sai, et al. Design of a dual-band electromagnetic absorber with frequency selective surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 841-845. doi: 10.1109/LAWP.2020.2981729
    [19]
    Edries M, Mohamed H A, Hekal S S, et al. A new compact quad-band metamaterial absorber using interlaced I/Square resonators: design, fabrication, and characterization[J]. IEEE Access, 2020, 17: 143723-143733.
    [20]
    Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. On the design of single-layer circuit analog absorber using double-square-loop array[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6022-6029. doi: 10.1109/TAP.2013.2280836
    [21]
    Chen Jianlin, Shang Yuping, Liao Cheng. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 591-595. doi: 10.1109/LAWP.2018.2805333
    [22]
    Baskey H B, Johari E, Akhtar M J. Metamaterial structure integrated with a dielectric absorber for wideband reduction of antennas radar cross section[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4): 1060-1069. doi: 10.1109/TEMC.2016.2639060
    [23]
    Bilotti F, Toscano A, Alici K B, et al. Design of miniaturized narrowband absorbers based on resonant-magnetic inclusions[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 63-72. doi: 10.1109/TEMC.2010.2051229
    [24]
    段坤, 唐守柱. 一种宽通带低插损的吸透一体频率选择表面[J]. 现代雷达, 2020, 42(4):72-76. (Duan Kun, Tang Shouzhu. A wide passband and low insertion loss frequency-selective resorber[J]. Modern Radar, 2020, 42(4): 72-76
    [25]
    赵宇婷, 李迎松, 杨国辉. 基于电路模拟吸收体的宽带吸波型频率选择表面设计[J]. 物理学报, 2020, 69:198101. (Zhao Yuting, Li Yingsong, Yang Guohui. A novel wideband absorptive frequency selective surface based on circuit analog absorber[J]. Acta Physica Sinic, 2020, 69: 198101 doi: 10.7498/aps.69.20200641
    [26]
    强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222. (Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222 doi: 10.11884/HPLPB201931.190210
    [27]
    Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. Frequency-selective rasorber based on square-loop and cross-dipole arrays[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5581-5589. doi: 10.1109/TAP.2014.2357427
    [28]
    Pang Yongqiang, Li Yongfeng, Qu Bingyue, et al. Wideband RCS reduction metasurface with a transmission window[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(10): 7079-7087. doi: 10.1109/TAP.2020.2995429
    [29]
    Shang Yuping, Lei Xue, Liao Cheng, et al. Frequency-selective structures with suppressed reflection through passive phase cancellation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1192-1197. doi: 10.1109/TAP.2019.2940495
    [30]
    Shang Yuping, Xiao Shaoqiu, Tang Mingchun, et al. Radar cross-section reduction for a microstrip patch antenna using PIN diodes[J]. IET Microwaves Antennas & Propagation, 2012, 6(6): 670-679. doi: 10.1049/iet-map.2011.0460
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views (1049) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return