Volume 34 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Zhang Li, Fu Bo, Huang Yuanjie, et al. Experimental investigation of plasma jet and solid target interaction based on laser-ablation launching approach[J]. High Power Laser and Particle Beams, 2022, 34: 011013. doi: 10.11884/HPLPB202234.210257
Citation: Zhang Li, Fu Bo, Huang Yuanjie, et al. Experimental investigation of plasma jet and solid target interaction based on laser-ablation launching approach[J]. High Power Laser and Particle Beams, 2022, 34: 011013. doi: 10.11884/HPLPB202234.210257

Experimental investigation of plasma jet and solid target interaction based on laser-ablation launching approach

doi: 10.11884/HPLPB202234.210257
  • Received Date: 2021-07-05
  • Accepted Date: 2021-12-15
  • Rev Recd Date: 2121-12-07
  • Available Online: 2021-11-02
  • Publish Date: 2022-01-15
  • Laser-ablation plasma has been regarded as a novel approach for providing high velocity loading in experiment. Axial jet velocity of km/s even higher than 5 km/s could be achieved by employing laser-driven plasma method. On the other side , a wide range of jet temperature and plasma density could also be obtained during the loading process. This paper presents an experimental method to investigate the super high-velocity impact of solid target with gas. A high energy laser-ablation plasma device was established in this work, and plasma with jet velocity above 10 km/s was generated during the experiment. The aerodynamic characteristics of the high-velocity object’s interaction with gas were studied in the experiment. The results of prove that, this work, the method has great potential for applications in the research of many fields including astrophysics, asteroid morphology, and the interaction of aerolith with atmosphere.
  • loading
  • [1]
    姜宗林, 俞鸿儒. 高超声速激波风洞研究进展[J]. 力学进展, 2009, 39(6):766-776. (Jiang Zonglin, Yu Hongru. Progress of the research on hypersonic shock tunnels[J]. Advances in Mechanics, 2009, 39(6): 766-776 doi: 10.3321/j.issn:1000-0992.2009.06.014
    [2]
    Lu F K, Marren D E. Advanced hypersonic test facilities[M]. Reston: American Institute of Aeronautics and Astronautics, Inc. , 2002: 198.
    [3]
    Itoh K, Ueda S, Komuro T, et al. Improvement of a free piston driver for a high-enthalpy shock tunnel[J]. Shock Waves, 1998, 8(4): 215-233. doi: 10.1007/s001930050115
    [4]
    Habermann M, Olivier H, Grong H. Operation of a high performance detonation driver in upstream propagation mode for a hypersonic shock tunnel[C]//Proceedings of the 22nd International Symposium on Shock Waves. 1999: 447-452.
    [5]
    张杰, 赵刚. 实验室天体物理学简介[J]. 物理, 2000, 29(7):393-396. (Zhang Jie, Zhao Gang. Introduction to laboratory astrophysics[J]. Physics, 2000, 29(7): 393-396 doi: 10.3321/j.issn:0379-4148.2000.07.003
    [6]
    孙伟, 仲佳勇. 在兆焦耳级激光设备上的实验室天体物理研究进展[J]. 天文学进展, 2020, 38(3):243-254. (Sun Wei, Zhong Jiayong. Recent advances in laboratory astrophysics on Mega-joule class laser facility[J]. Progress in Astronomy, 2020, 38(3): 243-254 doi: 10.3969/j.issn.1000-8349.2020.03.02
    [7]
    Miura H, Nakamoto T. Shock-wave heating model for chondrule formation: hydrodynamic simulation of molten droplets exposed to gas flows[J]. Icarus, 2007, 188(1): 246-265. doi: 10.1016/j.icarus.2006.11.008
    [8]
    Yasuda S, Miura H, Nakamoto T. Compound chondrule formation in the shock-wave heating model: three-dimensional hydrodynamics simulation of the disruption of a partially-molten dust particle[J]. Icarus, 2009, 204(1): 303-315. doi: 10.1016/j.icarus.2009.06.014
    [9]
    Desch S J, Morris M A, Connolly H C Jr, et al. The importance of experiments: constraints on chondrule formation models[J]. Meteoritics & Planetary Science, 2012, 47(7): 1139-1156.
    [10]
    夏江帆, 张杰. 实验室天体物理学中的标度变换[J]. 物理, 2001, 9(9):545-548. (Xia Jiangfan, Zhang Jie. Scaling Law in Laboratory Astrophysics. Physics[J]. Physics, 2001, 9(9): 545-548
    [11]
    黄菲, 杨方, 罗俊, 等. 均匀金属液滴喷射微制造技术的研究现状[J]. 机械科学与技术, 2012, 31(1):38-43. (Huang Fei, Yang Fang, Luo Jun, et al. Research status of uniform metal droplet spray for micro-manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(1): 38-43
    [12]
    Pashchina A S, Karmatsky R E, Klimov A I. The creation of hypersonic flows by a powerful impulse capillary discharge[J]. Technical Physics Letters, 2017, 43(11): 1033-1036. doi: 10.1134/S106378501711027X
    [13]
    Huntington C M, Manuel M J E, Ross J S, et al. Magnetic field production via the Weibel instability in interpenetrating plasma flows[J]. Physics of Plasmas, 2017, 24: 041410. doi: 10.1063/1.4982044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (1320) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return