Volume 34 Issue 3
Jan.  2022
Turn off MathJax
Article Contents
Fan Weijie, Feng Chao, Zhao Minghua. Simulation studies of external seeding schemes for Shanghai soft X-ray free electron laser[J]. High Power Laser and Particle Beams, 2022, 34: 031016. doi: 10.11884/HPLPB202234.210262
Citation: Fan Weijie, Feng Chao, Zhao Minghua. Simulation studies of external seeding schemes for Shanghai soft X-ray free electron laser[J]. High Power Laser and Particle Beams, 2022, 34: 031016. doi: 10.11884/HPLPB202234.210262

Simulation studies of external seeding schemes for Shanghai soft X-ray free electron laser

doi: 10.11884/HPLPB202234.210262
  • Received Date: 2021-07-08
  • Rev Recd Date: 2021-11-01
  • Available Online: 2021-11-15
  • Publish Date: 2022-01-13
  • Shanghai Soft X-ray Free Electron Laser User Facility (SXFEL-UF) is the first X-ray FEL in China that can produce coherent radiation in the water-window regime. The main working modes of SXFEL are self-amplified spontaneous emission and external seeding schemes. This paper mainly focuses on the start to end simulations of the external seeding schemes including echo-enabled harmonic generation-high gain harmonic generation cascade (EEHG-HGHG cascade) and single stage echo-enabled harmonic generation (EEHG). 3D simulations indicates that these external seeding schemes can generate coherent X-ray radiation at soft X-ray regime directly from a conventional UV seed laser.
  • loading
  • [1]
    Madey J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 1971, 42(5): 1906-1913. doi: 10.1063/1.1660466
    [2]
    Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176
    [3]
    Amann J, Berg W, Blank V, et al. Demonstration of self-seeding in a hard-X-ray free-electron laser[J]. Nature Photonics, 2012, 6(10): 693-698. doi: 10.1038/nphoton.2012.180
    [4]
    Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6(8): 540-544. doi: 10.1038/nphoton.2012.141
    [5]
    Shim C H, Yang H, Hong J, et al. Intensity optimization of X-ray free-electron laser by using phase shifters[J]. Physical Review Accelerators and Beams, 2020, 23: 90702. doi: 10.1103/PhysRevAccelBeams.23.090702
    [6]
    Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7(11): 913-918. doi: 10.1038/nphoton.2013.277
    [7]
    Yu L H, Ben-Zvi I. High-gain harmonic generation of soft X-rays with the “fresh bunch” technique[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 393(1/3): 96-99.
    [8]
    Milton S V, Gluskin E, Arnold N D, et al. Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser[J]. Science, 2001, 292(5524): 2037-2041. doi: 10.1126/science.1059955
    [9]
    Feng C, Deng H X. Review of fully coherent free-electron lasers[J]. Nuclear Science and Techniques, 2018, 29: 160. doi: 10.1007/s41365-018-0490-1
    [10]
    周开尚. 超高亮度X射线自由电子激光物理研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018

    Zhou Kaishang. Physical study of the ultra-high brightness X-ray free electron laser[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2018
    [11]
    Xiang D, Stupakov G. Echo-enabled harmonic generation free electron laser[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 030702. doi: 10.1103/PhysRevSTAB.12.030702
    [12]
    Borland M. ELEGANT: a flexible SDDS-compliant code for accelerator simulation[R]. LS-287: 2000.
    [13]
    Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.
    [14]
    Stupakov G. Using the beam-echo effect for generation of short-wavelength radiation[J]. Physical Review Letters, 2009, 102: 074801. doi: 10.1103/PhysRevLett.102.074801
    [15]
    Xiang D, Stupakov G. Tolerance study for the echo-enabled harmonic generation free electron laser[R]. SLAC-PUB-13644, 2009.
    [16]
    Hemsing E, Garcia B, Huang Z, et al. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure[J]. Physical Review Accelerators and Beams, 2017, 20: 060702. doi: 10.1103/PhysRevAccelBeams.20.060702
    [17]
    Penn G. Intra-beam scattering for free electron lasers and its modeling in chicanes[EB/OL]. [2014-09].https://escholarship.org/uc/item/3jn7g33k.
    [18]
    Stupakov G. Effect of coulomb collisions on echo-enabled harmonic generation (EEHG)[C]//Proceedings of FEL 2011. Shanghai: 2011.
    [19]
    Stupakov G. Effect of coulomb collisions on echo-enabled harmonic generation[C]//Proceedings of FEL 2013. New York: 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1393) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return