Volume 34 Issue 3
Jan.  2022
Turn off MathJax
Article Contents
Wang Hongjian, Ye Yan, Yang Qingguo, et al. X-ray dual-spectrum imaging produced by femtosecond laser[J]. High Power Laser and Particle Beams, 2022, 34: 031015. doi: 10.11884/HPLPB202234.210287
Citation: Wang Hongjian, Ye Yan, Yang Qingguo, et al. X-ray dual-spectrum imaging produced by femtosecond laser[J]. High Power Laser and Particle Beams, 2022, 34: 031015. doi: 10.11884/HPLPB202234.210287

X-ray dual-spectrum imaging produced by femtosecond laser

doi: 10.11884/HPLPB202234.210287
  • Received Date: 2021-07-14
  • Rev Recd Date: 2021-11-11
  • Available Online: 2021-11-19
  • Publish Date: 2022-01-13
  • To obtain an X-ray source to diagnose micro-mesoscopic state of material with high brightness, good monochromaticity and good contrast in pump-probe technology, and to often ignore the bremsstrahlung line, hence we designed a dual-spectrum diagnostic X-ray source experiments using characteristic and bremsstrahlung spectra. The experiment was carried out on the femtosecond laser beam of the “Xingguang Ⅲ” laser facility of China Academy of Engineering Physics. The laser power density is more than 1.6×1018 W/cm2, with the pulse width of 30 fs by 45° to the target surface. On the other side of the target normal line, the pinhole imaging optical path for characteristic spectral imaging was designed to obtain the focal spot image of 76 μm from the characteristic X-ray generated by the Cu nanoparticle target, larger than the average focus spot of 54 μm obtained by the knife-edge method. On the back side of the Cu target, the bremsstrahlung imaging optical path was designed, and the PIX-ray CCD was used to obtain 2×5 circular Ta group images. Experiments show that the dual-spectral imaging design is reasonable, which is suitable for dynamic diagnosis of micro-mesoscopic materials, and improve diagnosis efficiency.
  • loading
  • [1]
    Ditmire T, Bless S, Dyer G, et al. Overview of future directions in high energy-density and high-field science using ultra-intense lasers[J]. Radiation Physics and Chemistry, 2004, 70(4/5): 535-552.
    [2]
    Ravasio A, Gregori G, Benuzzi-Mounaix A, et al. Direct observation of strong ion coupling in laser-driven shock-compressed targets[J]. Physical Review Letters, 2007, 99: 135006. doi: 10.1103/PhysRevLett.99.135006
    [3]
    Barbrel B, Koenig M, Benuzzi-Mounaix A, et al. Measurement of short-range correlations in shock-compressed plastic by short-pulse X-ray scattering[J]. Physical Review Letters, 2009, 102: 165004. doi: 10.1103/PhysRevLett.102.165004
    [4]
    Lee H J, Neumayer P, Castor J, et al. X-ray Thomson-scattering measurements of density and temperature in shock-compressed beryllium[J]. Physical Review Letters, 2009, 102: 115001. doi: 10.1103/PhysRevLett.102.115001
    [5]
    Lee H J, Workman J, Wark J S, et al. Optically induced lattice dynamics probed with ultrafast X-ray diffraction[J]. Physical Review B, 2008, 77: 132301. doi: 10.1103/PhysRevB.77.132301
    [6]
    Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the α-ε transition in shock-compressed iron via nanosecond X-ray diffraction[J]. Physical Review Letters, 2005, 95: 075502. doi: 10.1103/PhysRevLett.95.075502
    [7]
    胡昌明, 王翔, 刘仓理, 等. 非均匀性对自由面粒子速度信号的影响[J]. 实验力学, 2008, 23(3):271-275. (Hu Changming, Wang Xiang, Liu Cangli, et al. Material inhomogeneity influence on free surface velocity signals[J]. Journal of Experimental Mechanics, 2008, 23(3): 271-275
    [8]
    Malone R M, Capelle G A, Celeste J R, et al. Overview of the line-imaging VISAR diagnostic at the National Ignition Facility (NIF)[C]//Proceedings of SPIE 6342, International Optical Design Conference 2006. Vancouver, 2006: 634220.
    [9]
    Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
    [10]
    Trott W M, Renlund A M, Jungst R G. Single-pulse Raman and photoacoustic spectroscopy studies of triaminotrinitrobenzene (TATB) and related compounds[C]//Proceedings of SPIE 0540, Southwest Conf on Optics '85. Albuquerque, 1985: 368-375.
    [11]
    Asay J R, Hall C A, Konrad C H, et al. Use of Z-pinch sources for high-pressure equation-of-state studies[J]. International Journal of Impact Engineering, 1999, 23(1): 27-38. doi: 10.1016/S0734-743X(99)00059-7
    [12]
    Chhabildas L C, Trott W M, Reinhart W D, et al. Incipient spall studies in tantalum-microstructural effects[J]. AIP Conference Proceedings, 2002, 620(1): 483-486.
    [13]
    辛建婷, 谷渝秋, 李平, 等. 强激光加载下金属材料微喷回收诊断[J]. 物理学报, 2012, 61:236201. (Xin Jianting, Gu Yuqiu, Li Ping, et al. Study on metal ejection under laser shock loading[J]. Acta Physica Sinica, 2012, 61: 236201 doi: 10.7498/aps.61.236201
    [14]
    Reich C, Gibbon P, Uschmann I, et al. Yield optimization and time structure of femtosecond laser plasma Kα sources[J]. Physical Review Letters, 2000, 84(21): 4846-4849. doi: 10.1103/PhysRevLett.84.4846
    [15]
    王洪建, 叶雁, 李军, 等. 激光驱动产生X射线光源的双光谱成像装置: 201210252295.2[P]. 2012-11-14

    Wang Hongjian, Ye Yan, Li Jun, et al. Double-spectrum imaging device driven by laser to generate X-ray source: 201210252295.2[P]. 2012-11-14
    [16]
    谭秀兰, 李恺, 罗炳池, 等. 去合金化工艺对纳米多孔铜纯度的影响[J]. 强激光与粒子束, 2013, 25(4):908-912. (Tan Xiulan, Li Kai, Luo Bingchi, et al. Effect of dealloying process on purity of nanoporous copper[J]. High Power Laser and Particle Beams, 2013, 25(4): 908-912 doi: 10.3788/HPLPB20132504.0908
    [17]
    Singh T, Kahlon K S, Dhaliwal A S. Total bremsstrahlung spectral photon distributions in metallic targets in the photon energy range of 5–10 keV by 204Tl beta particles[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(5): 737-741. doi: 10.1016/j.nimb.2009.01.009
    [18]
    Wang Hongjian, Li Zeren, Chen Zhanbin. High conversion efficiency and small spot size of Kα X-ray generated from nano-foam Cu targets irradiated by femtosecond laser pulses[J]. Applied Physics B, 2018, 124: 172.
    [19]
    熊勇. 基于Kα射线超短超强激光超热电子转换研究[D]. 北京: 中国工程物理研究院, 2008: 90-92

    Xiong Yong. Conversion efficiencies of ultra-short ultraintensity laser to ultra hot based on Ka X -ray electron[D]. Beijing: China Academy of Engineering Physics, 2008: 90-92
    [20]
    张双根, 谷渝秋, 温贤伦, 等. 相对论激光-固体靶作用中超热电子能谱测量[J]. 光电子·激光, 2006, 17(3):347-351. (Zhang Shuanggen, Gu Yuqiu, Wen Xianlun, et al. A measurement of hot electron energy spectrum in relativistic laser solid target interactions[J]. Journal of Optoelectronics Laser, 2006, 17(3): 347-351 doi: 10.3321/j.issn:1005-0086.2006.03.021
    [21]
    Liu Hongjie, Gu Yuqiu, Zhou Weimin, et al. Characterization of relativistic electrons generated by a cone guiding laser pulse[J]. Chinese Physics B, 2012, 21: 055207. doi: 10.1088/1674-1056/21/5/055207
    [22]
    叶雁, 李剑峰, 李泽仁, 等. 超短超强激光与金属靶作用产生硬X射线照相[J]. 强激光与粒子束, 2008, 20(8):1357-1359. (Ye Yan, Li Jianfeng, Li Zeren, et al. Radiography of hard X-ray produced by ultra-short ultra-intense laser-metal targets interactions[J]. High Power Laser and Particle Beams, 2008, 20(8): 1357-1359
    [23]
    刘艳莉. 工业X射线图像锐化技术算法研究[D]. 太原: 中北大学, 2015

    Liu Yanli. Study on industrial X-ray image sharpening technology algorithm[D]. Taiyuan: North University of China, 2015
    [24]
    李晨光. 管道焊缝无损检测的综合方法结合及图像处理[D]. 青岛: 中国石油大学(华东), 2011

    Li Chenguang. Synthetical NDT and image processing for weld joint of pipeline[D]. Qingdao: China University of Petroleum (East China), 2011).
    [25]
    王洪建, 阳庆国, 叶雁, 等. 重复频率下飞秒激光驱动产生的X射线焦斑测量[J]. 强激光与粒子束, 2015, 27:032039. (Wang Hongjian, Yang Qingguo, Ye Yan, et al. Measurement of femtosecond laser-driven X-ray focal spot with repetition frequency[J]. High Power Laser And Particle Beams, 2015, 27: 032039 doi: 10.11884/HPLPB201527.032039
    [26]
    Mao J Y, Chen L M, Ge X L, et al. Spectrally peaked electron beams produced via surface guiding and acceleration in femtosecond laser-solid interactions[J]. Physical Review E, 2012, 85: 025401. doi: 10.1103/PhysRevE.85.025401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (2159) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return