Volume 34 Issue 3
Jan.  2022
Turn off MathJax
Article Contents
Fu Bowen, Zhang Qinnan, Tian Yong, et al. Analysis of thermal effect of high-power semiconductor laser spectral combining grating[J]. High Power Laser and Particle Beams, 2022, 34: 031018. doi: 10.11884/HPLPB202234.210271
Citation: Fu Bowen, Zhang Qinnan, Tian Yong, et al. Analysis of thermal effect of high-power semiconductor laser spectral combining grating[J]. High Power Laser and Particle Beams, 2022, 34: 031018. doi: 10.11884/HPLPB202234.210271

Analysis of thermal effect of high-power semiconductor laser spectral combining grating

doi: 10.11884/HPLPB202234.210271
  • Received Date: 2021-10-06
  • Accepted Date: 2021-11-11
  • Rev Recd Date: 2021-10-30
  • Available Online: 2021-11-17
  • Publish Date: 2022-01-13
  • This paper presents a simulation model of a high-power semiconductor laser beam combining grating. This model analyzes the optical-thermal-stress change characteristics of the core device grating in the spectrum combining. The numerical analysis results show that when the power of the laser bar is 200 W and the natural convection coefficient is 10 W·(m2·K)−1, the highest temperature on the diffraction grating can be increased to 346.52 K, and the highest stress point can be increased to 0.4825 Pa, The maximum deformation per millimeter of the grating surface is 52.28 nm, which will cause the center position of the feedback beam to shift by 0.25 to 0.3 mm, which will affect the laser power and beam combining efficiency. By reducing the thickness of the diffraction grating substrate and working under the same laser light source conditions, the changes in temperature, stress, surface shape and strain can be effectively suppressed, which is consistent with the experimental results. This method provides an effective multi-physics analysis method for the structural design of high-power semiconductor lasers and the testing and analysis of optical devices, and provides a comprehensive analysis numerical model for laser design and testing.
  • loading
  • [1]
    Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-569. doi: 10.1109/JSTQE.2005.850241
    [2]
    Huang R K, Chann B, Burgess J, et al. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers[C]//Proc of SPIE. 2012: 824102.
    [3]
    宁永强, 陈泳屹, 张俊, 等. 大功率半导体激光器发展及相关技术概述[J]. 光学学报, 2021, 41:0114001. (Ning Yongqiang, Chen Yongyi, Zhang Jun, et al. A brief review of the development and the techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 2021, 41: 0114001 doi: 10.3788/AOS202141.0114001
    [4]
    Zhang Bo, Wang Zhaorong, Brodbeck S, et al. Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity[J]. Light:Science & Applications, 2014, 3(1): 1-2.
    [5]
    Könning T, Köhler B, Wolf P, et al. Optical components for tailoring beam properties of multi-kW diode lasers[C]//Proc of SPIE. 2017, 100850G.
    [6]
    Hengesbach S, Krauch N, Holly C, et al. High-power dense wavelength division multiplexing of multimode diode laser radiation based on volume Bragg gratings[J]. Optics letters, 2013, 38(16): 3154-3155. doi: 10.1364/OL.38.003154
    [7]
    Zhao Yue, Zhang Jinchuan, Zhou Yuhong, et al. External-cavity beam combining of 4-channel quantum cascade lasers[J]. Infrared Physics & Technology, 2017, 85: 52-55.
    [8]
    Sun Fangyuan, Shu Shili, Hou Guanyu, et al. Efficiency and threshold characteristics of spectrally beam combined high-power diode lasers[J]. IEEE Journal of Quantum Electronics, 2019, 55(1): 1-7.
    [9]
    Huang R K, Chann B, Glenn J D. Ultra-high brightness wavelength-stabilized kW-class fiber coupled diode laser[C]//Proc of SPIE. 2011: 791810.
    [10]
    Strohmaier S G, Erbert G, Meissner-Schenk A H, et al. kW-class diode laser bars[C]//Proc of SPIE. 2017: 100860C.
    [11]
    Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12064-12066.
    [12]
    侯睿, 赵尚弘, 胥杰, 等. 非相干光纤激光组束中光栅参数的确定[J]. 光学技术, 2007, 33(S1):97-99. (Hou Rui, Zhao Shanghong, Xu Jie, et al. The determination of grating parameters in incoherent fiber laser beam combination[J]. Optical Technique, 2007, 33(S1): 97-99
    [13]
    张俊明, 吴肖杰, 马晓辉, 等. 基于光谱合束技术的透射光栅模拟设计[J]. 应用光学, 2017, 38(3):514-520. (Zhang Junming, Wu Xiaojie, Ma Xiaohui, et al. Simulation design of transmission grating based on spectral beam combining technique[J]. Journal of Applied Optics, 2017, 38(3): 514-520
    [14]
    Xu Jiao, Chen Junming, Chen Peng, et al. Study of the key factors affecting temperature of spectral-beam-combination grating[J]. Optics Express, 2018, 26(17): 21675-21678. doi: 10.1364/OE.26.021675
    [15]
    Wang Hanbin, Song Yinglin, Yang Yifng, et al. Simulation and experimental study of laser-induced thermal deformation of spectral beam combination grating[J]. Optics Express, 2020, 28(22): 33334. doi: 10.1364/OE.408832
    [16]
    Tremain D E, Mei K K. Application of unimoment method to scattering from periodic dielectric structures[J]. Journal of the Optical Society of America, 1978, 68(6): 775-780. doi: 10.1364/JOSA.68.000775
    [17]
    陈军, 洪伟. MEI方法分析介质光栅对平面波的绕射[J]. 通信学报, 1997, 18(6):26-31. (Chen Jun, Hong Wei. Analysis of plane wave diffraction by dielectric gratings with MEI[J]. Journal of China Institute of Communications, 1997, 18(6): 26-31
    [18]
    谭昊, 孟慧成, 余俊宏, 等. 基于Mini-bar叠阵的百瓦级光栅-外腔光谱合束半导体激光光源[J]. 光学学报, 2015, 35. (Tan Hao, Meng Huicheng, Yu Junhong, et al. Hundred-watt level spectral beam combining diode laser source based on mini-bar stack[J]. Acta Optica Sinica, 2015, 35
    [19]
    秦卫平, 方大纲. 有限元法结合周期边界条件分析介质光栅衍射[J]. 电波科学学报, 2001, 16(4):480-482. (Qin Weiping, Fang Dagang. Finite element method of solving diffraction problem of dielectric optical grating[J]. Chinese Journal of Radio Science, 2001, 16(4): 480-482
    [20]
    Tang Enling, Lin Xiaochu, Han Yafei, et al. Experimental research on thermal-dynamic damage effect of K9 optical lens irradiated by femtosecond laser[J]. International Journal of Applied Glass Science, 2019, 11(2): 277-284.
    [21]
    Guan Kuiwen, Jiang Yanqi, Sun Changsen, et al. A two-layer model of laser interaction with skin: A photothermal effect analysis[J]. Optics & Laser Technology, 2011, 43(3): 425-429.
    [22]
    刘全喜, 钟鸣. LD端面泵浦薄片激光器的温度和热应力分布研究[J]. 应用光学, 2010, 31(4):636-640. (Liu Quanxi, Zhong Ming. Temperature and thermal stress distribution in thin disk laser end-pumped by LD[J]. Journal of Applied Optics, 2010, 31(4): 636-640
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (1693) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return