Volume 34 Issue 3
Jan.  2022
Turn off MathJax
Article Contents
Tu Lingjun, Feng Chao, Wang Xiaofan, et al. Simulation of generating attosecond water window band pulses by enhanced self-amplified spontaneous emission method[J]. High Power Laser and Particle Beams, 2022, 34: 031019. doi: 10.11884/HPLPB202234.210282
Citation: Tu Lingjun, Feng Chao, Wang Xiaofan, et al. Simulation of generating attosecond water window band pulses by enhanced self-amplified spontaneous emission method[J]. High Power Laser and Particle Beams, 2022, 34: 031019. doi: 10.11884/HPLPB202234.210282

Simulation of generating attosecond water window band pulses by enhanced self-amplified spontaneous emission method

doi: 10.11884/HPLPB202234.210282
  • Received Date: 2021-07-13
  • Rev Recd Date: 2021-08-27
  • Available Online: 2021-10-09
  • Publish Date: 2022-01-13
  • X-ray pulses of a few hundred attosecond play an important role in researches of ultra-fast science On enhanced self-amplified spontaneous emission (ESASE) mode. peak current of electron beams is much higher and the gain length is much shorter, in comparison with the self-amplified spontaneous emission mode in most running free electron laser (FEL) facilities. Based on typical parameters in soft X-ray free electron laser, this paper conducts an optimized simulation on ESASE. Simulation results show that hundreds attosecond X-ray of tunable wavelength in water window band is obtained, with a peak power of more than 1GW using a typical 2.5 GeV electron beam. This paper provides a reference to our following experiment on ESASE, and also sets a basis to the ongoing optimization of experimental parameters.
  • loading
  • [1]
    Duris J, Li Siqi, Driver T, et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser[J]. Nature Photonics, 2020, 14(1): 30-36. doi: 10.1038/s41566-019-0549-5
    [2]
    Corkum P B, Krausz F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387. doi: 10.1038/nphys620
    [3]
    Teichmann S M, Silva F, Cousin S L, et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493. doi: 10.1038/ncomms11493
    [4]
    Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513. doi: 10.1038/35107000
    [5]
    Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846
    [6]
    Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518. doi: 10.1364/OE.25.027506
    [7]
    Takahashi E J, Lan Pengfei, Mücke O D, et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses[J]. Nature Communications, 2013, 4: 2691. doi: 10.1038/ncomms3691
    [8]
    Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Special Topics—Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801
    [9]
    Saldin E L, Schneidmiller E A, Yurkov M V. Statistical properties of radiation from VUV and X-ray free electron laser[J]. Optics Communications, 1998, 148(4/6): 383-403.
    [10]
    Zholents A A. Method of an enhanced self-amplified spontaneous emission for X-ray free electron lasers[J]. Physical Review Special Topics—Accelerators and Beams, 2005, 8: 040701. doi: 10.1103/PhysRevSTAB.8.040701
    [11]
    Shim C H, Kim D E, Ko I S. Study of ESASE scheme with microbunching instability for generating attosecond-terawatt X-ray pulse in XFELs[C]//Proceedings of the 8th International Particle Accelerator Conference. 2017.
    [12]
    MacArthur J P, Duris J, Huang Zhirong, et al. High power sub-femtosecond X-ray pulse study for the LCLS[C]//Proceedings of IPAC 2017. 2017.
    [13]
    Carlson D R, Hutchison P, Hickstein D D, et al. Generating few-cycle pulses with integrated nonlinear photonics[J]. Optics Express, 2019, 27(26): 37374-37382. doi: 10.1364/OE.27.037374
    [14]
    Zheng Qi, Chao Feng, Deng Haixiao, et al. Generating attosecond X-ray pulses through an angular dispersion enhanced self-amplified spontaneous emission free electron laser[J]. Physical Review Accelerators and Beams, 2018, 21: 120703. doi: 10.1103/PhysRevAccelBeams.21.120703
    [15]
    Zeng Li, Feng Chao, Wang Xiaofan, et al. A super-fast free-electron laser simulation code for online optimization[J]. Photonics, 2020, 7(4): 1-12. doi: 10.3390/photonics7040117
    [16]
    Borland M. ELEGANT: a flexible SDDS-compliant code for accelerator simulation[R]. Advanced Photon Source LS-287. US Department of Energy, 2000.
    [17]
    Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (1332) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return