Volume 34 Issue 3
Jan.  2022
Turn off MathJax
Article Contents
Sun Hao, Feng Chao, Liu Bo. Coherent X-ray vortex generation based on echo-enabled harmonic generation free electron laser[J]. High Power Laser and Particle Beams, 2022, 34: 031020. doi: 10.11884/HPLPB202234.210285
Citation: Sun Hao, Feng Chao, Liu Bo. Coherent X-ray vortex generation based on echo-enabled harmonic generation free electron laser[J]. High Power Laser and Particle Beams, 2022, 34: 031020. doi: 10.11884/HPLPB202234.210285

Coherent X-ray vortex generation based on echo-enabled harmonic generation free electron laser

doi: 10.11884/HPLPB202234.210285
  • Received Date: 2021-07-14
  • Rev Recd Date: 2021-12-08
  • Available Online: 2021-12-17
  • Publish Date: 2022-01-13
  • External seeded free electron lasers (FELs) hold great advantage of emitting extremely high intensity, fully coherent, specially stable light, allowing researchers to study the structure of matter in ultra-small space and ultra-fast time scales. The light with a special transverse phase mode, especially vortex light with orbital angular momentum has been used in many scientific fields. However, the transverse mode of the FELs radiation is basically a simple gaussian mode. In this paper, the generation of the vortex light based on echo-enabled harmonic generation (EEHG) free electron laser is theoretically studied and the simulation studies are carried out according to the parameters of Shanghai Soft X-ray Free Electron Laser Facility (SXFEL). The results of three- dimensional simulation show that the EEHG type free electron laser can produce coherent vortex soft X rays with peak power up to GW magnitude.
  • loading
  • [1]
    Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801
    [2]
    Saldin E L, Schneidmiller E A, Yurkov M V. Statistical properties of radiation from VUV and X-ray free electron laser[J]. Optics Communications, 1998, 148(4/6): 383-403.
    [3]
    Stupakov G. Using the beam-echo effect for generation of short-wavelength radiation[J]. Physical Review Letters, 2009, 102: 074801. doi: 10.1103/PhysRevLett.102.074801
    [4]
    Yu L H. Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers[J]. Physical Review A, 1991, 44(8): 5178-5193. doi: 10.1103/PhysRevA.44.5178
    [5]
    Feng Chao, Deng Haixiao, Zhang Meng, et al. Coherent extreme ultraviolet free-electron laser with echo-enabled harmonic generation[J]. Physical Review Accelerators and Beams, 2019, 22(5): 050703. doi: 10.1103/PhysRevAccelBeams.22.050703
    [6]
    Ribič P R, Abrami A, Badano L, et al. Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser[J]. Nature Photonics, 2019, 13(8): 555-561. doi: 10.1038/s41566-019-0427-1
    [7]
    Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [8]
    Franke‐Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299-313.
    [9]
    Kuga T, Torii Y, Shiokawa N, et al. Novel optical trap of atoms with a doughnut beam[J]. Physical Review Letters, 1997, 78(25): 4713-4716. doi: 10.1103/PhysRevLett.78.4713
    [10]
    Jack B, Leach J, Romero J, et al. Holographic ghost imaging and the violation of a Bell inequality[J]. Physical Review Letters, 2009, 103: 083602. doi: 10.1103/PhysRevLett.103.083602
    [11]
    Shigematsu K, Yamane K, Morita R, et al. Coherent dynamics of exciton orbital angular momentum transferred by optical vortex pulses[J]. Physical Review B, 2016, 93: 045205. doi: 10.1103/PhysRevB.93.045205
    [12]
    Liu Baiyang, Cui Yuehui, Li Ronglin. A broadband dual-polarized dual-OAM-mode antenna array for OAM communication[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 16: 744-747.
    [13]
    van Veenendaal M. Interaction between X-ray and magnetic vortices[J]. Physical Review B, 2015, 92: 245116. doi: 10.1103/PhysRevB.92.245116
    [14]
    Jüstel D, Friesecke G, James R D. Bragg–von Laue diffraction generalized to twisted X-rays[J]. Acta Crystallographica Section A:Foundations and Advances, 2016, 72(2): 190-196. doi: 10.1107/S2053273315024390
    [15]
    van Veenendaal M, McNulty I. Prediction of strong dichroism induced by X rays carrying orbital momentum[J]. Physical Review Letters, 2007, 98: 157401. doi: 10.1103/PhysRevLett.98.157401
    [16]
    Ye L, Rouxel J R, Asban S, et al. Probing molecular chirality by orbital-angular-momentum-carrying X-ray pulses[J]. Journal of Chemical Theory and Computation, 2019, 15(7): 4180-4186. doi: 10.1021/acs.jctc.9b00346
    [17]
    Kotlyar V V, Almazov A A, Khonina S N, et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J]. Journal of the Optical Society of America A, 2005, 22(5): 849-861. doi: 10.1364/JOSAA.22.000849
    [18]
    Beijersbergen M W, Allen L, Van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1/3): 123-132.
    [19]
    Terhalle B, Langner A, Päivänranta B, et al. Generation of extreme ultraviolet vortex beams using computer generated holograms[J]. Optics Letters, 2011, 36(21): 4143-4145. doi: 10.1364/OL.36.004143
    [20]
    Sasaki S, McNulty I, Dejus R. Undulator radiation carrying spin and orbital angular momentum[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 582(1): 43-46.
    [21]
    Ribič P R, Gauthier D, De Ninno G. Generation of coherent extreme-ultraviolet radiation carrying orbital angular momentum[J]. Physical Review Letters, 2014, 112: 203602. doi: 10.1103/PhysRevLett.112.203602
    [22]
    Hemsing E, Marinelli A. Echo-enabled X-ray vortex generation[J]. Physical Review Letters, 2012, 109: 224801. doi: 10.1103/PhysRevLett.109.224801
    [23]
    Zhao Zhentang, Wang Dong, Gu Qiang, et al. Status of the SXFEL facility[J]. Applied Sciences, 2017, 7: 607. doi: 10.3390/app7060607
    [24]
    Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1603) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return