Volume 34 Issue 3
Jan.  2022
Turn off MathJax
Article Contents
Ma Guangjin, Li Chunlai, He Jin. Attosecond light pulses in simulations using various laser plasmas[J]. High Power Laser and Particle Beams, 2022, 34: 031014. doi: 10.11884/HPLPB202234.210297
Citation: Ma Guangjin, Li Chunlai, He Jin. Attosecond light pulses in simulations using various laser plasmas[J]. High Power Laser and Particle Beams, 2022, 34: 031014. doi: 10.11884/HPLPB202234.210297

Attosecond light pulses in simulations using various laser plasmas

doi: 10.11884/HPLPB202234.210297
  • Received Date: 2021-07-19
  • Rev Recd Date: 2021-09-17
  • Available Online: 2021-10-12
  • Publish Date: 2022-01-13
  • The generation of single isolated attosecond light pulses from the interaction of relativistic few-cycle lasers with solid density plasma surfaces is investigated using one dimensional particle-in-cell simulations. The primary subject of the study is the effects of the multi-parameter combinations which uniquely define the laser plasma interactions, on the laser to relativistic high-order harmonic energy conversion efficiencies, and also on the single attosecond light pulse isolation degrees. Here these multi-parameters include laser intensities, incidence angles, plasma scale lengths, etc. The impact of laser-plasma interaction parameters on attosecond light pulse generations is generally complicated. However, there exist an optimal plasma scale length and an optimal incidence angle to efficiently generate high-order harmonics and intense attosecond light pulses. When other parameters are fixed, a moderately intense relativistic laser is more advantageous to realize isolated attosecond light pulses with a broad controlling parameters range. And a larger incidence angle favors a higher isolation degree as well as a broader range of controlling parameters towards the generation of intense isolated attosecond light pulses.
  • loading
  • [1]
    Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nat Photon, 2011, 5(11): 655-663. doi: 10.1038/nphoton.2011.167
    [2]
    Kühn S, Dumergue M, Kahaly S, et al. The ELI-ALPS facility: the next generation of attosecond sources[J]. J Phys B:At Mol Opt Phys, 2017, 50: 132002. doi: 10.1088/1361-6455/aa6ee8
    [3]
    Christov I P, Murnane M M, Kapteyn H C. High-harmonic generation of attosecond pulses in the “single-cycle” regime[J]. Phys Rev Lett, 1997, 78(7): 1251-1254. doi: 10.1103/PhysRevLett.78.1251
    [4]
    Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846
    [5]
    Ivanov M, Corkum P B, Zuo Tao, et al. Routes to control of intense-field atomic polarizability[J]. Phys Rev Lett, 1995, 74(15): 2933-2936. doi: 10.1103/PhysRevLett.74.2933
    [6]
    Tzallas P, Skantzakis E, Kalpouzos C, et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields[J]. Nat Phys, 2007, 3(12): 846-850. doi: 10.1038/nphys747
    [7]
    Mauritsson J, Johnsson P, Gustafsson E, et al. Attosecond pulse trains generated using two color laser fields[J]. Phys Rev Lett, 2006, 97: 013001. doi: 10.1103/PhysRevLett.97.013001
    [8]
    Pfeifer T, Gallmann L, Abel M J, et al. Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field[J]. Opt Lett, 2006, 31(7): 975-977. doi: 10.1364/OL.31.000975
    [9]
    Feng Ximao, Gilbertson S, Mashiko H, et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers[J]. Phys Rev Lett, 2009, 103: 183901. doi: 10.1103/PhysRevLett.103.183901
    [10]
    Gilbertson S, Khan S D, Wu Yi, et al. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers[J]. Phys Rev Lett, 2010, 105: 093902. doi: 10.1103/PhysRevLett.105.093902
    [11]
    Rivas D E, Borot A, Cardenas D E, et al. Next generation driver for attosecond and laser-plasma physics[J]. Sci Rep, 2017, 7: 5224. doi: 10.1038/s41598-017-05082-w
    [12]
    Tsakiris G D, Eidmann K, Meyer-ter-Vehn J, et al. Route to intense single attosecond pulses[J]. New J Phys, 2006, 8: 19. doi: 10.1088/1367-2630/8/1/019
    [13]
    Ma Guangjin, Dallari W, Borot A, et al. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses[J]. Phys Plasmas, 2015, 22: 033105. doi: 10.1063/1.4914087
    [14]
    Quéré F, Thaury C, Monot P, et al. Coherent wake emission of high-order harmonics from overdense plasmas[J]. Phys Rev Lett, 2006, 96: 125004. doi: 10.1103/PhysRevLett.96.125004
    [15]
    Baeva T, Gordienko S, Pukhov A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma[J]. Phys Rev E, 2006, 74: 046404. doi: 10.1103/PhysRevE.74.046404
    [16]
    an der Brügge D, Pukhov A. Enhanced relativistic harmonics by electron nanobunching[J]. Phys Plasmas, 2010, 17: 033110. doi: 10.1063/1.3353050
    [17]
    Lichters R, Meyer-ter-Vehn J, Pukhov A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity[J]. Phys Plasmas, 1996, 3(9): 3425-3437. doi: 10.1063/1.871619
    [18]
    Gordienko S, Pukhov A, Shorokhov O, et al. Relativistic Doppler effect: universal spectra and zeptosecond pulses[J]. Phys Rev Lett, 2004, 93: 115002. doi: 10.1103/PhysRevLett.93.115002
    [19]
    Gonoskov A A, Korzhimanov A V, Kim A V, et al. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[J]. Phys Rev E, 2011, 84: 046403. doi: 10.1103/PhysRevE.84.046403
    [20]
    Vincenti H, Monchocé S, Kahaly S, et al. Optical properties of relativistic plasma mirrors[J]. Nat Commun, 2014, 5: 3403. doi: 10.1038/ncomms4403
    [21]
    Shumakova V, Malevich P, Ališauskas S, et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk[J]. Nat Commun, 2016, 7: 12877. doi: 10.1038/ncomms12877
    [22]
    Leshchenko V E, Talbert B K, Lai Yuhang, et al. High-power few-cycle Cr: ZnSe mid-infrared source for attosecond soft X-ray physics[J]. Optica, 2020, 7(8): 981-988. doi: 10.1364/OPTICA.393377
    [23]
    Rossi G M, Mainz R E, Yang Yudong, et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science[J]. Nat Photon, 2020, 14(10): 629-635. doi: 10.1038/s41566-020-0659-0
    [24]
    Budriūnas R, Stanislauskas T, Adamonis J, et al. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate[J]. Opt Express, 2017, 25(5): 5797-5806. doi: 10.1364/OE.25.005797
    [25]
    Heissler P, Barna A, Mikhailova J M, et al. Multi-μJ harmonic emission energy from laser-driven plasma[J]. Appl Phys B, 2015, 118(2): 195-201. doi: 10.1007/s00340-014-5968-x
    [26]
    Behmke M, an der Brügge D, Rödel C, et al. Controlling the spacing of attosecond pulse trains from relativistic surface plasmas[J]. Phys Rev Lett, 2011, 106: 185002. doi: 10.1103/PhysRevLett.106.185002
    [27]
    Kormin D, Borot A, Ma Guangjin, et al. Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces[J]. Nat Commun, 2018, 9: 4992. doi: 10.1038/s41467-018-07421-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (2498) PDF downloads(138) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return