Volume 34 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Hu Weimin, Wang Xiaojun, Tian Changyong, et al. Influence of mid-infrared laser pulse width on in-band damage threshold of HgCdTe[J]. High Power Laser and Particle Beams, 2022, 34: 011009. doi: 10.11884/HPLPB202234.210321
Citation: Hu Weimin, Wang Xiaojun, Tian Changyong, et al. Influence of mid-infrared laser pulse width on in-band damage threshold of HgCdTe[J]. High Power Laser and Particle Beams, 2022, 34: 011009. doi: 10.11884/HPLPB202234.210321

Influence of mid-infrared laser pulse width on in-band damage threshold of HgCdTe

doi: 10.11884/HPLPB202234.210321
  • Received Date: 2021-07-26
  • Rev Recd Date: 2021-12-01
  • Available Online: 2021-12-10
  • Publish Date: 2022-01-15
  • To study the influence of pulse width on the damage threshold of HgCdTe material irradiated by mid-infrared in-band laser pulse, a one-dimensional model named self-consistent model is established. Some parameters including number density of carrier, carrier and energy current, temperature of carrier and lattice are calculated in the whole process. Damage thresholds of in-band single pulsed laser, whose wavelength is 2.85 μm and pulse width ranges from 30 ps to 10 ns, are obtained. The results show that, damage threshold rauge of in-band laser is 200−500 mJ/cm2. Among them, the damage threshold of 300 ps to 3 ns laser pulses is about 200 mJ/cm2, which is lower than that of other pulsed lasers. The validity of simulation model is verified by setting up the experimental devices and carrying out relevant experiments. Using a single pulsed laser with wavelength of 2.85 μm and pulse width of 300 ps as the light source, the damage threshold is about 200 mJ/cm2. Under the same conditions, when 10 ns single laser pulse is used, the damage threshold is greater than 474 mJ/cm2. The damage process of the HgCdTe material destroyed by hundred-picosecond pulsed laser combines thermal and optical breakdown effects, and its unique mechanism aggravates the destruction of material.
  • loading
  • [1]
    朱志武. 短脉冲激光对可见光CCD及滤光片组件的损伤效应研究[D]. 长沙: 国防科学技术大学, 2013: 45-74

    Zhu Zhiwu. Short pulsed laser induced damage to visible light CCD and optical filter module[D]. Changsha: National University of Defense Technology, 2013: 45-74
    [2]
    Vohra A, Bansal S K, Sharma R K, et al. Surface effects on laser-induced damage in Si[J]. Journal of Physics D: Applied Physics, 1990, 23(1): 56-66. doi: 10.1088/0022-3727/23/1/010
    [3]
    Becker M F, Zhang Chenzhi, Watkins S E, et al. Laser-induced damage to silicon CCD imaging sensors[C]//Proceedings of SPIE 1105, Materials for Optical Switches, Isolators, and Limiters. 1989: 68-77.
    [4]
    王金宝. 激光辐照可见光面阵Si-CCD探测器实验研究[D]. 长沙: 国防科学技术大学, 2003: 26-29

    Wang Jinbao. Experimental investigation of the visible light arrays of Si-CCD irradiated by the laser[D]. Changsha: National University of Defense Technology, 2003: 26-29
    [5]
    Wang Tingting, Li Pingxue, Yu Xuyang, et al. High-energy hundred-picosecond fiber-solid hybrid laser and its application in laser-induced damage in PIN photodiode[J]. Laser Physics, 2020, 30: 036004. doi: 10.1088/1555-6611/ab6d65
    [6]
    杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012

    Yang Jianrong. Physics and technology of HgCdTe materials[M]. Beijing: National Defense Industry Press, 2012
    [7]
    杨海峰. 线阵碲镉汞探测器的光致反常响应及闩锁效应研究[D]. 长沙: 国防科学技术大学, 2015: 1-6

    Yang Haifeng. Researches on the abnormal response and latchup effect of PV-HgCdTe linear array detector induced by light[D]. Changsha: National University of Defense Technology, 2015: 1-6
    [8]
    Bartoli F, Esterowitz L, Kruer M, et al. Irreversible laser damage in ir detector materials[J]. Applied Optics, 1977, 16(11): 2934-2937. doi: 10.1364/AO.16.002934
    [9]
    Chen C S, Liu A H, Sun G, et al. Analysis of laser damage threshold and morphological changes at the surface of a HgCdTe crystal[J]. Journal of Optics A:Pure and Applied Optics, 2006, 8(1): 88-92. doi: 10.1088/1464-4258/8/1/014
    [10]
    Garg A, Kapoor A, Tripathi K N, et al. Laser induced damage studies in mercury cadmium telluride[J]. Optics & Laser Technology, 2007, 39(7): 1319-1327.
    [11]
    许晓军, 曾交龙, 陆启生, 等. 1.06 μm激光对PC型HgCdTe探测器的破坏阈值研究[J]. 强激光与粒子束, 1998, 10(4):552-556. (Xu Xiaojun, Zeng Jiaolong, Lu Qisheng, et al. Research of damage thresholds of PC-type HgCdTe detector under CW-YAG laser[J]. High Power Laser and Particle Beams, 1998, 10(4): 552-556
    [12]
    郑业亮, 胡以华, 赵楠翔, 等. 脉宽及重频对HgCdTe探测器损伤阈值影响分析[J]. 激光技术, 2018, 42(2):265-270. (Zheng Yeliang, Hu Yihua, Zhao Nanxiang, et al. Analysis of the influence of pulse width and repetition frequency on damage threshold of HgCdTe detector[J]. Laser Technology, 2018, 42(2): 265-270 doi: 10.7510/jgjs.issn.1001-3806.2018.02.024
    [13]
    Wang Xi, Wang Qingsheng, Hu Hongtao, et al. Experimental study of HgCdTe imaging sensor irradiated by pulse CO2 laser[C]//Proceedings of SPIE 10152, High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration. 2016: 1015202.
    [14]
    栗兴良, 牛春晖, 马牧燕, 等. 10.6μm激光辐照碲镉汞红外探测器热损伤研究[J]. 红外技术, 2016, 38(1):6-9,20. (Li Xingliang, Niu Chunhui, Ma Muyan, et al. Research on the thermal damage of HgCdTe infrared detector under laser irradiation of 10.6 μm wavelength[J]. Infrared Technology, 2016, 38(1): 6-9,20 doi: 10.11846/j.issn.1001_8891.201601002
    [15]
    褚君浩. 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005

    Chu Junhao. Narrow gap semiconductor physics[M]. Beijing: Science Press, 2005
    [16]
    陆启生, 江天, 江厚满, 等. 半导体材料和器件的激光辐照效应[M]. 北京: 国防工业出版社, 2015

    Lu Qisheng, Jiang Tian, Jiang Houman, et al. Laser radiation effects on semiconductor materials and devices[M]. Beijing: National Defense Industry Press, 2015
    [17]
    Chen J K, Tzou D Y, Beraun J E. Numerical investigation of ultrashort laser damage in semiconductors[J]. International Journal of Heat and Mass Transfer, 2005, 48(3/4): 501-509.
    [18]
    Seiler D G, McClure S W, Justice R J, et al. Nonlinear optical characterization of Hg1-xCdxTe using two-photon absorption techniques[J]. Journal of Vacuum Science & Technology A, 1986, 4(4): 2034-2039.
    [19]
    Kinch M A. A theoretical model for the HgCdTe electron avalanche photodiode[J]. Journal of Electronic Materials, 2008, 37(9): 1453-1459. doi: 10.1007/s11664-008-0439-y
    [20]
    Adachi S. Properties of semiconductor alloys: group-IV, III–V and II–VI semiconductors[M]. Chichester: Wiley, 2009.
    [21]
    陈星. 碲镉汞红外焦平面探测器可靠性相关技术研究[D]. 上海: 中国科学院上海技术物理研究所, 2014: 1-18

    Chen Xing. Research on the related technology of HgCdTe infrared focal plane detector reliability[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014: 1-18
    [22]
    Syllaios A J, Liao P K K, Dean B E. Optical absorption coefficient of CdZnTe[C]//Proceedings of SPIE 2274, Infrared Detectors: State of the Art II. 1994: 49-54.
    [23]
    邱伟成. 线阵光伏型碲镉汞探测器激光辐照效应若干问题研究[D]. 长沙: 国防科学技术大学, 2012: 12-32

    Qiu Weicheng. Research on the irradiation effects of PV-HgCdTe linear array detector under laser[D]. Changsha: National University of Defense Technology, 2012: 12-32
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (1642) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return