Volume 34 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Meng Fanxin, Xing Zhongyang, Xu Zhongjie, et al. Simulation study of strong light interference effect in temporally and spatially modulated Fourier transform imaging spectrometer[J]. High Power Laser and Particle Beams, 2022, 34: 011010. doi: 10.11884/HPLPB202234.210342
Citation: Meng Fanxin, Xing Zhongyang, Xu Zhongjie, et al. Simulation study of strong light interference effect in temporally and spatially modulated Fourier transform imaging spectrometer[J]. High Power Laser and Particle Beams, 2022, 34: 011010. doi: 10.11884/HPLPB202234.210342

Simulation study of strong light interference effect in temporally and spatially modulated Fourier transform imaging spectrometer

doi: 10.11884/HPLPB202234.210342
  • Received Date: 2021-08-04
  • Rev Recd Date: 2021-12-17
  • Available Online: 2021-12-21
  • Publish Date: 2022-01-15
  • This paper presents the computational studies on the effect and mechanism of strong light interference in the large aperture static interference imaging spectrometer. First, we generated images with simplified ground targets and computed the corresponding original interference imaging pattern. Then, we simulated a 830 nm single-wavelength laser and a super continuum laser respectively, to analyze the typical interference effects. During the process, it was assumed that the original spectral information could be resolved only when the spectral angle is lower than 30°. For the 830 nm laser interference, the spectral angle would reach 30° when the ratio of laser interference imaging peak to the target imaging peak was 0.2∶1, but the interference effect could be effectively filtered by the 830 nm filter. In the case of super continuum laser interference, the spectral angle was finally stabilized at 21° without considering the saturation threshold, but the detector could be oversaturated more easily. Overall, both 830 nm laser and super continuum laser can disable the spectrum recovery process, but the mechanisms are different since the former one shifts the characteristic peak of the spectrum and the latter makes the interference fringes unrecognizable.
  • loading
  • [1]
    尚博. 高光谱干涉成像重构技术研究[D]. 南京: 南京理工大学, 2008

    Shang Bo. Research on reconstruction technology of hyperspectral interference imaging[D]. Nanjing: Nanjing University of Science and Technology, 2008
    [2]
    崔代军, 庞其昌, 马骥, 等. 湿度对西洋参品质影响的快速无损检测[J]. 激光与光电子学进展, 2011, 48:093001. (Cui Daijun, Pang Qichang, Ma Ji, et al. Rapid and nondestructive detection of quality of Panax quinquefolium effected by humidity[J]. Laser & Optoelectronics Progress, 2011, 48: 093001
    [3]
    赵风财, 肖广兵, 张涌. 基于高光谱成像的隧道油污监测系统设计[J]. 土木建筑工程信息技术, 2021, 13(1):46-50. (Zhao Fengcai, Xiao Guangbing, Zhang Yong. Design of tunnel oil pollution monitoring system based on hyperspectral imaging[J]. Journal of Information Technology in Civil Engineering and Architecture, 2021, 13(1): 46-50
    [4]
    Pham T H, Bevilacqua F, Spott T, et al. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging[J]. Applied Optics, 2000, 39(34): 6487-6497. doi: 10.1364/AO.39.006487
    [5]
    张瑜, 刘秉琦, 闫宗群, 等. 目标自辐射与干扰目标反射光谱的氧气吸收特性分析[J]. 强激光与粒子束, 2015, 27:081003. (Zhang Yu, Liu Bingqi, Yan Zongqun, et al. Oxygen absorption factors of target radiation and interference targets reflection spectra[J]. High Power Laser and Particle Beams, 2015, 27: 081003 doi: 10.11884/HPLPB201527.081003
    [6]
    Hamazaki T, Kaneko Y, Kuze A, et al. Fourier transform spectrometer for Greenhouse Gases Observing Satellite (GOSAT)[C]//Proceedings of SPIE 5659, Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing. 2005: 5659.
    [7]
    江澄, 陶东兴, 何红艳. 大气环境红外甚高光谱分辨率探测仪数字建模与仿真[J]. 航天返回与遥感, 2018, 39(3):94-103. (Jiang Cheng, Tao Dongxing, He Hongyan. Digital modeling and simulation of AIUS[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 94-103 doi: 10.3969/j.issn.1009-8518.2018.03.011
    [8]
    相里斌, 王忠厚, 刘学斌, 等. “环境与灾害监测预报小卫星”高光谱成像仪[J]. 遥感技术与应用, 2009, 24(3):257-262. (Xiang Libin, Wang Zhonghou, Liu Xuebin, et al. Hyperspectral imager of the environment and disaster monitoring small satellite[J]. Remote Sensing Technology and Application, 2009, 24(3): 257-262 doi: 10.11873/j.issn.1004-0323.2009.3.257
    [9]
    Yang Qinghua. Design study of a compact ultra-wide-angle high-spatial-resolution high-spectral-resolution snapshot imaging spectrometer[J]. Optics Express, 2021, 29(2): 2893-2908. doi: 10.1364/OE.415484
    [10]
    Xie Yunqiang, Liu Chunyu, Liu Shuai, et al. Snapshot imaging spectrometer based on pixel-level filter array (PFA)[J]. Sensors, 2021, 21: 2289. doi: 10.3390/s21072289
    [11]
    Zhou Shiyao, Wang Yueming. A broadband spherical prism imaging spectrometer based on a single integrated module[J]. Optical and Quantum Electronics, 2021, 53: 289. doi: 10.1007/s11082-021-02930-y
    [12]
    樊星皓, 刘春雨, 金光, 等. 轻小型高分辨率星载高光谱成像光谱仪[J]. 光学 精密工程, 2021, 29(3):463-473. (Fan Xinghao, Liu Chunyu, Jin Guang, et al. Small and high-resolution spaceborne hyperspectral imaging spectrometer[J]. Optics and Precision Engineering, 2021, 29(3): 463-473 doi: 10.37188/OPE.20212903.0463
    [13]
    Liu Xingwei, Zhou Jinsong, Wei Lidong, et al. Optical design of Schwarzschild imaging spectrometer with freeform surfaces[J]. Optics Communications, 2021, 480: 126495. doi: 10.1016/j.optcom.2020.126495
    [14]
    赵美红. 消像差凸面全息光栅成像光谱系统建模与一体化设计[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021

    Zhao Meihong. Modeling and integrated design of imaging spectrometers with aberration-correction convex holographic gratings[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2021
    [15]
    赵美红, 王新宇, 姜岩秀, 等. 变间距凸面光栅成像光谱系统的消像散设计[J]. 光学 精密工程, 2020, 28(10):2103-2111. (Zhao Meihong, Wang Xinyu, Jiang Yanxiu, et al. Anastigmatic design of imaging spectrometer with varied line-space convex grating[J]. Optics and Precision Engineering, 2020, 28(10): 2103-2111 doi: 10.37188/OPE.20202810.2103
    [16]
    相里斌, 吕群波, 才啟胜, 等. Fourier变换成像光谱技术[J]. 中国科学:信息科学, 2020, 50(10):1462-1474. (Xiang Libin, Lü Qunbo, Cai Qisheng, et al. Fourier transform imaging spectroscopy[J]. SCIENTIA SINICA Informationis, 2020, 50(10): 1462-1474 doi: 10.1360/SSI-2020-0150
    [17]
    Otten III L J, Sellar R G, Rafert B. MightySat II. 1 Fourier-transform hyperspectral imager payload performance[C]//Proceedings of SPIE 2583, Advanced and Next-Generation Satellites. 1995: 2583.
    [18]
    Connes J. Research on formation and transformation of Fourier[J]. Journal of Optics, 1961, 40: 45-265.
    [19]
    Mertz L. Auxiliary computation for Fourier spectrometry[J]. Infrared Physics, 1967, 7(1): 17-23. doi: 10.1016/0020-0891(67)90026-7
    [20]
    Forman M L, Steel W H, Vanasse G A. Correction of asymmetric interferograms obtained in Fourier spectroscopy[J]. Journal of the Optical Society of America, 1966, 56(1): 59-63. doi: 10.1364/JOSA.56.000059
    [21]
    相里斌. Fourier变换光谱学理论研究[D]. 西安: 中国科学院西安光学精密机械研究所, 1995

    Xiang Libin. Theoretical research on Fourier transform spectroscopy[D]. Xi'an: Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 1995
    [22]
    Saarinen P E. The spectral line narrowing problem and a computer program based on the gulf tuning method[J]. Applied Spectroscopy, 1998, 52(12): 1569-1582. doi: 10.1366/0003702981943077
    [23]
    邵铭, 程相正, 康华超, 等. 激光对星载相机的干扰能力研究[J]. 激光与红外, 2020, 50(10):1253-1257. (Shao Ming, Cheng Xiangzheng, Kang Huachao, et al. Research on the interference ability of laser to satellite-borne camera[J]. Laser & Infrared, 2020, 50(10): 1253-1257 doi: 10.3969/j.issn.1001-5078.2020.10.017
    [24]
    于晨曦. 强光对可见光CCD摄像系统成像过程的干扰研究[J]. 数字通信世界, 2020(1):174-175. (Yu Chenxi. Research on the interference of strong light on the imaging process of visible light CCD camera system[J]. Digital Communication World, 2020(1): 174-175 doi: 10.3969/J.ISSN.1672-7274.2020.01.133
    [25]
    江天, 程湘爱. 连续激光对3通道CCD相机的饱和干扰效应[J]. 强激光与粒子束, 2010, 22(11):2571-2574. (Jiang Tian, Cheng Xiang’ai. Saturation interference to three-channel CCD camera by CW laser[J]. High Power Laser and Particle Beams, 2010, 22(11): 2571-2574 doi: 10.3788/HPLPB20102211.2571
    [26]
    郭少锋, 程湘爱, 傅喜泉, 等. 高重复频率飞秒激光对面阵CCD的干扰和破坏[J]. 强激光与粒子束, 2007, 19(11):1783-1786. (Guo Shaofeng, Cheng Xiang’ai, Fu Xiquan, et al. Failure of array CCD irradiated by high-repetitive femto-second laser[J]. High Power Laser and Particle Beams, 2007, 19(11): 1783-1786
    [27]
    刘长安, 陈金宝, 马金龙, 等. 红外激光对可见光CCD成像系统的干扰[J]. 强激光与粒子束, 2010, 22(8):1727-1730. (Liu Chang’an, Chen Jinbao, Ma Jinlong, et al. Jamming of visible light array CCD imaging system by infrared laser[J]. High Power Laser and Particle Beams, 2010, 22(8): 1727-1730 doi: 10.3788/HPLPB20102208.1727
    [28]
    娄小程, 李晓英, 牛春晖, 等. 白光辐照多光谱CCD的干扰效应研究[J]. 激光技术, 2021, 45(6):703-708. (Lou Xiaocheng, Li Xiaoying, Niu Chunhui, et al. Study on the interference effect of white light irradiation multispectral CCD[J]. Laser Technology, 2021, 45(6): 703-708 doi: 10.7510/jgjs.issn.1001-3806.2021.06.005
    [29]
    袁艳. 成像光谱理论与技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2005

    Yuan Yan. Research on theory and technology of imaging spectroscopy[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics and Precision Mechanics), 2005
    [30]
    赵春晖, 田明华, 李佳伟. 光谱相似性度量方法研究进展[J]. 哈尔滨工程大学学报, 2017, 38(8):1179-1189. (Zhao Chunhui, Tian Minghua, Li Jiawei. Research progress on spectral similarity metrics[J]. Journal of Harbin Engineering University, 2017, 38(8): 1179-1189
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views (1165) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return