| Citation: | Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004. doi: 10.11884/HPLPB202234.210331 |
| [1] |
McClung F J, Hellwarth R W. Giant optical pulsations from ruby[J]. Journal of Applied Physics, 1962, 33(3): 828-829. doi: 10.1063/1.1777174
|
| [2] |
Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10): 4023-4037. doi: 10.1063/1.1658407
|
| [3] |
Carr C W, Bude J D, Demange P. Laser-supported solid-state absorption fronts in silica[J]. Physical Review B, 2010, 82: 184304. doi: 10.1103/PhysRevB.82.184304
|
| [4] |
Bloembergen N. Laser-induced electric breakdown in solids[J]. IEEE Journal of Quantum Electronics, 1974, 10(3): 375-386. doi: 10.1109/JQE.1974.1068132
|
| [5] |
Epifanov A S, Manenkov A A, Prokhorov A M. Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field[J]. Journal of Experimental and Theoretical Physics, 1976, 43(2): 377-382.
|
| [6] |
Schaffer C B, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Measurement Science and Technology, 2001, 12(11): 1784-1794. doi: 10.1088/0957-0233/12/11/305
|
| [7] |
Deng Hongxiang, Guo Wenli, Gao Huanhuan, et al. A numerical approach for femtosecond laser-induced photoionization in solids and its application[J]. Journal of Optics, 2019, 21: 075501. doi: 10.1088/2040-8986/ab2357
|
| [8] |
Jing Xufeng, Tian Ying, Zhang Junchao, et al. Modeling validity of femtosecond laser breakdown in wide bandgap dielectrics[J]. Applied Surface Science, 2012, 258(10): 4741-4749. doi: 10.1016/j.apsusc.2012.01.070
|
| [9] |
Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection[C]//Proceedings of SPIE 3578 Laser-Induced Damage in Optical Materials. 1999: 387-397.
|
| [10] |
Liu Xiaofeng, Li Dawei, Zhao Yuan’an, et al. Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings[J]. Applied Surface Science, 2010, 256(12): 3783-3788. doi: 10.1016/j.apsusc.2010.01.026
|
| [11] |
Papernov S. Mechanisms of near-ultraviolet, nanosecond-pulse–laser damage in HfO2/SiO2-based multilayer coatings[J]. Chinese Optics Letters, 2013, 11: S10703.
|
| [12] |
Li Cheng, Zhao Yuan’an, Cui Yun, et al. Comparison of 355-nm nanosecond and 1064-nm picosecond laser-induced damage in high-reflective coatings[J]. Optical Engineering, 2018, 57: 121908.
|
| [13] |
Borden M R, Folta J A, Stolz C J, et al. Improved method for laser damage testing coated optics[C]//Proceedings of SPIE 5991, Laser-Induced Damage in Optical Materials. 2005: 59912A.
|
| [14] |
Taniguchi J, Lebarron N E, Howe J, et al. Functional damage thresholds of hafnia/silica coating designs for the NIF laser[C]//Proceedings of SPIE 4347, Laser-Induced Damage in Optical Materials. 2001: 109-117.
|
| [15] |
Stolz C J. Status of NIF mirror technologies for completion of the NIF facility[C]//Proceedings of SPIE 7101, Advances in Optical Thin Films III. 2008: 710115.
|
| [16] |
Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
|
| [17] |
Suratwala T I, Miller P E, Bude J D, et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 2011, 94(2): 416-428. doi: 10.1111/j.1551-2916.2010.04112.x
|
| [18] |
Bude J, Miller P, Baxamusa S, et al. High fluence laser damage precursors and their mitigation in fused silica[J]. Optics Express, 2014, 22(5): 5839-5851. doi: 10.1364/OE.22.005839
|
| [19] |
Liu Xiaofeng, Li Dawei, Zhao Yuan’an, et al. Further investigation of the characteristics of nodular defects[J]. Applied Optics, 2010, 49(10): 1774-1779. doi: 10.1364/AO.49.001774
|
| [20] |
Shan Yongguang, He Hongbo, Wei Chaoyang, et al. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Applied Optics, 2010, 49(22): 4290-4295. doi: 10.1364/AO.49.004290
|
| [21] |
潘顺民, 卫耀伟, 安晨辉, 等. 45°高反膜中节瘤缺陷的电场增强效应及损伤特性[J]. 强激光与粒子束, 2020, 32:071006. (Pan Shunmin, Wei Yaowei, An Chenhui, et al. Electric field enhancement effect and damage characteristics of nodular defect in 45° high-reflection coating[J]. High Power Laser and Particle Beams, 2020, 32: 071006
|
| [22] |
Shan Yongguang, He Hongbo, Wei Chaoyang, et al. Thermomechanical analysis of nodule damage in HfO2/SiO2 multilayer coatings[J]. Chinese Optics Letters, 2011, 9: 103101. doi: 10.3788/COL201109.103101
|
| [23] |
Stolz C J. Engineering high-damage-threshold NIF polarizers and mirrors [R]. ICF Quarterly Report, 1999, 9(2): 151-162.
|
| [24] |
Demange P P, Negres R A, Radousky H B, et al. Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals[J]. Optical Engineering, 2010, 45: 104205.
|
| [25] |
Demos S G, Demange P, Negres R A, et al. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals[J]. Optics Express, 2010, 18(13): 13788-13804. doi: 10.1364/OE.18.013788
|
| [26] |
Reyné S, Duchateau G, Natoli J Y, et al. Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation[J]. Optics Express, 2009, 17(24): 21652-21665. doi: 10.1364/OE.17.021652
|
| [27] |
Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the National Ignition Facility[J]. Fusion Science and Technology, 2016, 69(1): 295-351. doi: 10.13182/FST15-143
|
| [28] |
Wang Yueliang, Zhao Yuan’an, Xie Xiaoyi, et al. Laser damage dependence on the size and concentration of precursor defects in KDP crystals: view through differently sized filter pores[J]. Optics Letter, 2016, 41(7): 1534-1537. doi: 10.1364/OL.41.001534
|
| [29] |
Demange P, Negres R A, Carr C W, et al. Laser-induced defect reactions governing damage initiation in DKDP crystals[J]. Optics Express, 2006, 14(12): 5313-5328. doi: 10.1364/OE.14.005313
|
| [30] |
Duchateau G. Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses[J]. Optics Express, 2009, 17(13): 10434-10456. doi: 10.1364/OE.17.010434
|
| [31] |
李成. 纳观尺度缺陷诱导多层介质膜激光损伤动力学研究[D].上海: 中国科学院上海光学精密机械研究所, 2020: 79-87
Li Cheng. Dynamics of nanoscale defects induced laser damage of multilayer dielectric coatings[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2020: 79-87
|
| [32] |
De Yoreo J J, Burnham A K, Whitman P K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser[J]. International Materials Reviews, 2002, 47(3): 113-152. doi: 10.1179/095066001225001085
|
| [33] |
Sheehan L M, Kozlowski M R, Tench R J. Full-aperture laser conditioning of multilayer mirrors and polarizers[C]//Proceedings of SPIE 2633, Solid State Lasers for Application to Inertial Confinement Fusion (ICF). 1995: 457-463.
|
| [34] |
Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Applied Optics, 1993, 32(30): 5973-5982. doi: 10.1364/AO.32.005973
|
| [35] |
赵元安, 胡国行, 刘晓凤, 等. 激光预处理技术及其应用[J]. 光学 精密工程, 2016, 24(12):2938-2947. (Zhao Yuan’an, Hu Guohang, Liu Xiaofeng, et al. Laser conditioning technology and its applications[J]. Optics and Precision Engineering, 2016, 24(12): 2938-2947 doi: 10.3788/OPE.20162412.2938
|
| [36] |
Sheehan L M, Schwartz S, Battersby C L, et al. Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory[C]//Proceedings of SPIE 3578, Laser-Induced Damage in Optical Materials. 1999: 302-313.
|
| [37] |
Liao Z M, Spaeth M L, Manes K, et al. Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model[J]. Optics Letters, 2010, 35(15): 2538-2540. doi: 10.1364/OL.35.002538
|
| [38] |
Peng Xiaocong, Zhao Yuan’an, Wang Yueliang, et al. Variation of the band structure in DKDP crystal excited by intense sub-picosecond laser pulses[J]. High Power Laser Science and Engineering, 2018, 6: 03000e41.
|
| [39] |
王岳亮. I类KDP和II类DKDP晶体激光损伤机理及激光预处理特性研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2017: 53-66
Wang Yueliang. Laser damage mechanisms and laser conditioning properties in I-type KDP and II-type DKDP crystals[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2017: 53-66
|