| Citation: | Wu Xianqian, Huang Chenguang. Laser driven explosion and shock wave: a review[J]. High Power Laser and Particle Beams, 2022, 34: 011003. doi: 10.11884/HPLPB202234.210326 |
| [1] |
郑哲敏. 爆炸加工[M]. 2版. 北京: 国防工业出版社, 1981
Zheng Zhemin. Explosion and processing[M]. 2nd ed. Beijing: National Defense Industry Press, 1981
|
| [2] |
郑哲敏, 谈庆明. 爆炸复合界面波的形成机理[J]. 力学学报, 1989, 21(2):129-139. (Zheng Zhemin, Tan Qingming. Mechanism of wave formation at the interface in explosive welding[J]. Acta Mechanica Sinica, 1989, 21(2): 129-139
|
| [3] |
孙承纬, 陆启生, 范正修, 等. 激光辐照效应[M]. 北京: 国防工业出版社, 2002
Sun Chengwei, Lu Qisheng, Fan Zhengxiu, et al. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002
|
| [4] |
吴先前. 金属材料激光冲击强化机理的实验与理论研究[D]. 北京: 中国科学院大学, 2012
Wu Xianqian. Experimental and theoretical studies on laser shock peening of metals[D]. Beijing: University of Chinese Academy of Sciences, 2012
|
| [5] |
Askar'yan G A, Moroz E M. Pressure on evaporation of matter in a radiation beam[J]. Soviet Journal of Experimental and Theoretical Physics, 1963, 16: 1638-1639.
|
| [6] |
Radziemski L J, Cremers D A. Lasers-induced plasmas and applications[M]. New York: Marcel Dekker Inc. , 1989.
|
| [7] |
Ready J F. Effects due to absorption of laser radiation[J]. Journal of Applied Physics, 1965, 36(2): 462-468. doi: 10.1063/1.1714012
|
| [8] |
White R M. Elastic wave generation by electron bombardment or electromagnetic wave absorption[J]. Journal of Applied Physics, 1963, 34(7): 2123-2124. doi: 10.1063/1.1729762
|
| [9] |
Fairand B P, Wilcox B A, Gallagher W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9): 3893-3895. doi: 10.1063/1.1661837
|
| [10] |
Sano Y, Mukai N, Okazaki K, et al. Residual stress improvement in metal surface by underwater laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 121(1/4): 432-436.
|
| [11] |
Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784. doi: 10.1063/1.346783
|
| [12] |
Hong Xin, Wang Shengbo, Guo Dahao, et al. Confining medium and absorptive overlay: their effects on a laser-induced shock wave[J]. Optics and Lasers in Engineering, 1998, 29(6): 447-455. doi: 10.1016/S0143-8166(98)80012-2
|
| [13] |
Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing[J]. Journal of Laser Applications, 1998, 10(6): 265-279. doi: 10.2351/1.521861
|
| [14] |
Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications[J]. Optical and Quantum Electronics, 1995, 27(12): 1213-1229.
|
| [15] |
Zhang Wenwu, Yao Y L, Noyan I C. Microscale laser shock peening of thin films, part 1: experiment, modeling and simulation[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1): 10-17. doi: 10.1115/1.1645878
|
| [16] |
Colvin J D, Ault E R, King W E, et al. Computational model for a low-temperature laser-plasma driver for shock-processing of metals and comparison to experimental data[J]. Physics of Plasmas, 2003, 10(7): 2940-2947. doi: 10.1063/1.1581285
|
| [17] |
Sollier A, Berthe L, Peyre P, et al. Laser-matter interaction in laser shock processing[C]//Proceedings of SPIE 4831, First International Symposium on High-Power Laser Macroprocessing. 2003: 463-467.
|
| [18] |
Wu Benxin, Shin Y C. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments[J]. Journal of Applied Physics, 2005, 97: 113517. doi: 10.1063/1.1915537
|
| [19] |
Wu Xianqian, Duan Zhuping, Song Hongwei, et al. Shock pressure induced by glass-confined laser shock peening: experiments, modeling and simulation[J]. Journal of Applied Physics, 2011, 110: 053112. doi: 10.1063/1.3633266
|
| [20] |
吴先前, 段祝平, 黄晨光, 等. 激光冲击强化过程中蒸气等离子体压力计算的耦合模型[J]. 爆炸与冲击, 2012, 32(1):1-7. (Wu Xianqian, Duan Zhuping, Huang Chenguang, et al. A coupling model for computing plasma pressure induced by laser shock peening[J]. Explosion and Shock Waves, 2012, 32(1): 1-7 doi: 10.3969/j.issn.1001-1455.2012.01.001
|
| [21] |
Fournier J, Ballard P, Merrien P, et al. Mechanical effects induced by shock waves generated by high energy laser pulses[J]. Journal de Physique III, 1991, 1(9): 1467-1480. doi: 10.1051/jp3:1991204
|
| [22] |
Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering:A, 1996, 210(1/2): 102-113.
|
| [23] |
Shepard M J, Smith P R, Amer M S. Introduction of compressive residual stresses in Ti-6Al-4V simulated airfoils via laser shock processing[J]. Journal of Materials Engineering and Performance, 2001, 10(6): 670-678. doi: 10.1361/105994901770344539
|
| [24] |
Masse J E, Barreau G. Laser generation of stress waves in metal[J]. Surface and Coatings Technology, 1995, 70(2/3): 231-234.
|
| [25] |
Hu Y X, Yao Z Q, Wang F, et al. Study on residual stress of laser shock processing based on numerical simulation and orthogonal experimental design[J]. Surface Engineering, 2007, 23(6): 470-478. doi: 10.1179/174329407X247208
|
| [26] |
Peyre P, Berthe L, Scherpereel X, et al. Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour[J]. Journal of Materials Science, 1998, 33(6): 1421-1429. doi: 10.1023/A:1004331205389
|
| [27] |
Wu Xianqian, Tan Qingming, Huang Chenguang. Geometrical scaling law for laser shock processing[J]. Journal of Applied Physics, 2013, 114: 043105. doi: 10.1063/1.4816487
|
| [28] |
谈庆明. 量纲分析[M]. 北京: 中国科学技术大学出版社, 2005
Tan Qingming. Dimensional analysis[M]. Beijing: University of Science and Technology of China Press, 2005
|
| [29] |
King A, Steuwer A, Woodward C, et al. Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J]. Materials Science and Engineering:A, 2006, 435/436: 12-18. doi: 10.1016/j.msea.2006.07.020
|
| [30] |
邹世坤, 巩水利, 郭恩明, 等 发动机整体叶盘的激光冲击强化技术[J]. 中国激光, 2011, 38: 0601009
Zou Shikun, Gong Shuili, Guo Enming, et al. Laser peening of turbine engine integrally blade rotor[J]. Chinese Journal of Lasers, 2011, 38: 0601009
|
| [31] |
王健, 邹世坤, 谭永生. 激光冲击处理技术在发动机上的应用[J]. 应用激光, 2005, 25(1):32-34. (Wang Jian, Zou Shikun, Tan Yongsheng. Application of laser shock processing on turbine engines[J]. Applied Laser, 2005, 25(1): 32-34 doi: 10.3969/j.issn.1000-372X.2005.01.010
|
| [32] |
Bartsch T M. High Cycle Fatigue (HCF) science and technology program[R]. Technical Report, AD-A408071, 2002.
|
| [33] |
Ruschau J J, John R, Thompson S R, et al. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium[J]. International Journal of Fatigue, 1999, 21 Suppl 1: S199-S209.
|
| [34] |
Sokol D W, Clauer A H, Dulaney J L, et al. Applications of laser peening to titanium alloys[C]//Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies. 2005: PTuB4.
|
| [35] |
刘志东, 杨怡生, 余承业. 激光冲击强化改善金属疲劳特性的研究[J]. 航空制造技术, 1992(5):8-12. (Liu Zhidong, Yang Yisheng, Yu Chengye. Using laser shock processing to improve metal fatigue property[J]. Aeronautical Manufacturing Technology, 1992(5): 8-12
|
| [36] |
高建民. 我国首台激光冲击强化装置问世[J]. 高技术通讯, 1996(6):32. (Gao Jianmin. Chinese first laser shock peening equipment is published[J]. High Technology Letters, 1996(6): 32
|
| [37] |
吴嘉俊, 赵吉宾, 乔红超, 等. 激光冲击强化技术的应用现状与发展[J]. 光电工程, 2018, 45:170690. (Wu Jiajun, Zhao Jibin, Qiao Hongchao, et al. The application status and development of laser shock processing[J]. Opto-Electronic Engineering, 2018, 45: 170690
|
| [38] |
Chen Lan, Ren Xudong, Zhou Wangfan, et al. Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening[J]. Materials Science and Engineering:A, 2018, 728: 20-29. doi: 10.1016/j.msea.2018.04.105
|
| [39] |
Hua Yinqun, Bai Yuchuan, Ye Yunxia, et al. Hot corrosion behavior of TC11 titanium alloy treated by laser shock processing[J]. Applied Surface Science, 2013, 283: 775-780. doi: 10.1016/j.apsusc.2013.07.017
|
| [40] |
Zhao Xiangfan, He Weifeng, Zang Shunlai, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253: 68-75. doi: 10.1016/j.surfcoat.2014.05.015
|
| [41] |
Correa C, Peral D, Porro J A, et al. Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: a solution to reduce residual stress anisotropy[J]. Optics & Laser Technology, 2015, 73: 179-187.
|
| [42] |
Dai Fengze, Zhou Jianzhong, Lu Jinzhong, et al. A technique to decrease surface roughness in overlapping laser shock peening[J]. Applied Surface Science, 2016, 370: 501-507. doi: 10.1016/j.apsusc.2016.02.138
|
| [43] |
Zhang X C, Zhang Y K, Lu J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science and Engineering:A, 2010, 527(15): 3411-3415. doi: 10.1016/j.msea.2010.01.076
|
| [44] |
Correa C, de Lara L, Díaz M, et al. Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening[J]. International Journal of Fatigue, 2015, 79: 1-9. doi: 10.1016/j.ijfatigue.2015.04.018
|
| [45] |
曹子文, 邹世坤, 刘方军, 等. 激光冲击处理1Cr11Ni2W2MoV不锈钢[J]. 中国激光, 2008, 35(2):316-320. (Cao Ziwen, Zou Shikun, Liu Fangjun, et al. Laser shock processing on 1Cr11Ni2W2MoV martensite steel[J]. Chinese Journal of Lasers, 2008, 35(2): 316-320 doi: 10.3321/j.issn:0258-7025.2008.02.033
|
| [46] |
王华明, 李晓轩, 孙锡军, 等. 激光冲击处理不锈钢及镍基合金后表面力学性能的研究[J]. 中国激光, 2000, 27(8):756-760. (Wang Huaming, Li Xiaoxuan, Sun Xijun, et al. Study of surface mechanical properties of laser shock processed austenitic steel and Ni-based Superalloy[J]. Chinese Journal of Lasers, 2000, 27(8): 756-760 doi: 10.3321/j.issn:0258-7025.2000.08.019
|
| [47] |
Trdan U, Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods[J]. Corrosion Science, 2012, 59: 324-333. doi: 10.1016/j.corsci.2012.03.019
|
| [48] |
Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel[J]. Corrosion Science, 2012, 60: 145-152. doi: 10.1016/j.corsci.2012.03.044
|
| [49] |
Ge Maozhong, Xiang Jianyun, Yang L. Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid[J]. Surface and Coatings Technology, 2017, 310: 157-165. doi: 10.1016/j.surfcoat.2016.12.093
|
| [50] |
Sánchez-Santana U, Rubio-González C, Gomez-Rosas G, et al. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing[J]. Wear, 2006, 260(7/8): 847-854.
|
| [51] |
Lim H, Kim P, Jeong H, et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. Journal of Materials Processing Technology, 2012, 212(6): 1347-1354. doi: 10.1016/j.jmatprotec.2012.01.023
|
| [52] |
Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994. doi: 10.1016/j.actamat.2010.03.026
|
| [53] |
Luo Sihai, Nie Xiangfan, Zhou Liucheng, et al. Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy[J]. Surface and Coatings Technology, 2017, 311: 337-343. doi: 10.1016/j.surfcoat.2017.01.031
|
| [54] |
Ye Chang, Suslov S, Kim B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014-1025. doi: 10.1016/j.actamat.2010.10.032
|
| [55] |
Tani G, Orazi L, Fortunato A, et al. Warm laser shock peening: new developments and process optimization[J]. CIRP Annals, 2011, 60(1): 219-222. doi: 10.1016/j.cirp.2011.03.115
|
| [56] |
Ye Chang, Liao Yiliang, Suslov S, et al. Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility[J]. Materials Science and Engineering: A, 2014, 609: 195-203. doi: 10.1016/j.msea.2014.05.003
|
| [57] |
Zhou J Z, Meng X K, Huang S, et al. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy[J]. Materials Science and Engineering:A, 2015, 643: 86-95. doi: 10.1016/j.msea.2015.07.017
|
| [58] |
柳沅汛, 王曦, 吴先前, 等. 激光冲击处理304不锈钢表面的形貌特征及其机理分析[J]. 中国激光, 2013, 40:0103004. (Liu Yuanxun, Wang Xi, Wu Xianqian, et al. Surface morphology and deformation mechanism of 304 stainless steel treated by laser shock peening[J]. Chinese Journal of Lasers, 2013, 40: 0103004 doi: 10.3788/CJL201340.0103004
|
| [59] |
Ye Chang, Suslov S, Lin Dong, et al. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 2012, 92(11): 1369-1389. doi: 10.1080/14786435.2011.645899
|
| [60] |
Fu Jie, Zhu Yunhu, Zheng Chao, et al. Evaluate the effect of laser shock peening on plasticity of Zr-based bulk metallic glass[J]. Optics & Laser Technology, 2015, 73: 94-100.
|
| [61] |
Liu Y, Jiang M Q, Yang G W, et al. Surface rippling on bulk metallic glass under nanosecond pulse laser ablation[J]. Applied Physics Letters, 2011, 99: 191902. doi: 10.1063/1.3656700
|
| [62] |
Song X, Xiao K L, Wu X Q, et al. Nanoparticles produced by nanosecond pulse laser ablation of a metallic glass in water[J]. Journal of Non-Crystalline Solids, 2019, 517: 119-126. doi: 10.1016/j.jnoncrysol.2019.05.009
|
| [63] |
Wei Yanpeng, Xu Guangyue, Zhang Kun, et al. Anomalous shear band characteristics and extra-deep shock-affected zone in Zr-based bulk metallic glass treated with nanosecond laser peening[J]. Scientific Reports, 2017, 7: 43948. doi: 10.1038/srep43948
|
| [64] |
Wang Fei, Zhang Chenfei, Lu Yongfeng, et al. Laser shock processing of polycrystalline alumina ceramics[J]. Journal of the American Ceramic Society, 2017, 100(3): 911-919. doi: 10.1111/jace.14630
|
| [65] |
Shukla P, Nath S, Wang Guanjun, et al. Surface property modifications of silicon carbide ceramic following laser shock peening[J]. Journal of the European Ceramic Society, 2017, 37(9): 3027-3038. doi: 10.1016/j.jeurceramsoc.2017.03.005
|
| [66] |
Jiang Weifeng, Gong Xinglong, Xuan Shouhu, et al. Stress pulse attenuation in shear thickening fluid[J]. Applied Physics Letters, 2013, 102: 101901. doi: 10.1063/1.4795303
|
| [67] |
Waitukaitis S R, Jaeger H M. Impact-activated solidification of dense suspensions via dynamic jamming fronts[J]. Nature, 2012, 487(7406): 205-209. doi: 10.1038/nature11187
|
| [68] |
Barnes H A. Shear-thickening ("Dilatancy") in suspensions of nonaggregating solid particles dispersed in Newtonian liquids[J]. Journal of Rheology, 1989, 33(2): 329-366. doi: 10.1122/1.550017
|
| [69] |
Ding Jie, Tian Tongfei, Meng Qing, et al. Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection[J]. Scientific Reports, 2013, 3: 2485. doi: 10.1038/srep02485
|
| [70] |
Wu Xianqian, Zhong Fachun, Yin Qiuyun, et al. Dynamic response of shear thickening fluid under laser induced shock[J]. Applied Physics Letters, 2015, 106: 071903. doi: 10.1063/1.4913423
|
| [71] |
Wu Xianqian, Yin Qiuyun, Huang Chenguang. Experimental study on pressure, stress state, and temperature-dependent dynamic behavior of shear thickening fluid subjected to laser induced shock[J]. Journal of Applied Physics, 2015, 118: 173102. doi: 10.1063/1.4934857
|
| [72] |
Duerig T, Melton K, Stockel D, et al. Engineering aspects of shape memory alloys[M]. London: Butterworth-Heinemann, 1990.
|
| [73] |
Liao Yiliang, Ye Chang, Lin Dong, et al. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening[J]. Journal of Applied Physics, 2012, 112: 033515. doi: 10.1063/1.4742997
|
| [74] |
Wang Xi, Xia Weiguang, Wu Xianqian, et al. Microstructure and mechanical properties of an austenite NiTi shape memory alloy treated with laser induced shock[J]. Materials Science and Engineering:A, 2013, 578: 1-5. doi: 10.1016/j.msea.2013.04.058
|
| [75] |
Wang Xi, Xia Weiguang, Wu Xianqian, et al. In-situ investigation of dynamic deformation in NiTi shape memory alloys under laser induced shock[J]. Mechanics of Materials, 2017, 114: 69-75. doi: 10.1016/j.mechmat.2017.06.009
|
| [76] |
夏伟光, 吴先前, 魏延鹏, 等. 激光冲击强化对NiTi形状记忆合金力学性质的影响[J]. 中国激光, 2013, 40:1103002. (Xia Weiguang, Wu Xianqian, Wei Yanpeng, et al. Mechanical properties of NiTi shape memory alloy processed by laser shock peening[J]. Chinese Journal of Lasers, 2013, 40: 1103002 doi: 10.3788/CJL201340.1103002
|
| [77] |
Nemat-Nasser S, Choi J Y, Guo Weiguo, et al. Very high strain-rate response of a NiTi shape-memory alloy[J]. Mechanics of Materials, 2005, 37(2/3): 287-298.
|
| [78] |
Xu Yunhua, Chen Yumei, Zhu Jinhua. Wear behavior and nano-structure of surface layers of Hadfield steel under impact loading[J]. Progress in Natural Science, 2001, 11(6): 447-453.
|
| [79] |
Yin Qiuyun, Wu Xianqian, Huang Chenguang, et al. Atomistic study of temperature and strain rate-dependent phase transformation behaviour of NiTi shape memory alloy under uniaxial compression[J]. Philosophical Magazine, 2015, 95(23): 2491-2512. doi: 10.1080/14786435.2015.1065018
|
| [80] |
Frost H J, Ashby M F. Deformation-mechanism maps: the plasticity and creep of metals and ceramics[M]. Oxford: Pergamon Press, 1982.
|
| [81] |
Yin Qiuyun, Wu Xianqian, Huang Chenguang. Atomistic study on shock behaviour of NiTi shape memory alloy[J]. Philosophical Magazine, 2017, 97(16): 1311-1333. doi: 10.1080/14786435.2017.1294769
|
| [82] |
Zhao Xinghai, Zhao Xiang, Shan Guangcun, et al. Fiber-coupled laser-driven flyer plates system[J]. Review of Scientific Instruments, 2011, 82: 043904. doi: 10.1063/1.3581220
|
| [83] |
Veysset D, Lee J H, Hassani M, et al. High-velocity micro-projectile impact testing[J]. Applied Physics Review, 2021, 8: 011319.
|
| [84] |
Dean S W, De Lucia F C, Gottfried J L. Indirect ignition of energetic materials with laser-driven flyer plates[J]. Applied Optics, 2017, 56(3): B134-B141. doi: 10.1364/AO.56.00B134
|
| [85] |
Curtis A D, Banishev A A, Shaw W L, et al. Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry[J]. Review of Scientific Instruments, 2014, 85: 043908. doi: 10.1063/1.4871361
|
| [86] |
Watson S, Field J E. Measurement of the ablated thickness of films in the launch of laser-driven flyer plates[J]. Journal of Physics D:Applied Physics, 2000, 33(2): 170-174. doi: 10.1088/0022-3727/33/2/312
|
| [87] |
Brown K E, Shaw W L, Zheng Xianxu, et al. Simplified laser-driven flyer plates for shock compression science[J]. Review of Scientific Instruments, 2012, 83: 103901. doi: 10.1063/1.4754717
|
| [88] |
Veysset D, Hsieh A J, Kooi S, et al. Dynamics of supersonic microparticle impact on elastomers revealed by real-time multi-frame imaging[J]. Scientific Reports, 2016, 6: 25577. doi: 10.1038/srep25577
|
| [89] |
Lee J H, Loya P E, Lou Jun, et al. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration[J]. Science, 2014, 346(6213): 1092-1096. doi: 10.1126/science.1258544
|
| [90] |
Xie Wanting, Alizadeh-Dehkharghani A, Chen Qiyong, et al. Dynamics and extreme plasticity of metallic microparticles in supersonic collisions[J]. Scientific Reports, 2017, 7: 5073. doi: 10.1038/s41598-017-05104-7
|
| [91] |
Xiao Kailu, Wu Xianqian, Song Xuan, et al. Study on performance degradation and damage modes of thin-film photovoltaic cell subjected to particle impact[J]. Scientific Reports, 2021, 11: 782. doi: 10.1038/s41598-020-80879-w
|
| [92] |
Dong J L, Song X, Wang Z J, et al. Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration[J]. Extreme Mechanics Letters, 2021, 44: 101258. doi: 10.1016/j.eml.2021.101258
|
| [93] |
Xiao Kailu, Wu Xianqian, Wu Chenwu, et al. Residual stress analysis of thin film photovoltaic cells subjected to massive micro-particle impact[J]. RSC Advances, 2020, 10(23): 13470-13479. doi: 10.1039/C9RA10082B
|
| [94] |
Xiao Kailu, Lei Xudong, Chen Yuyu, et al. Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact[J]. Carbon, 2021, 175: 478-489. doi: 10.1016/j.carbon.2021.01.009
|
| [95] |
Hyon J, Lawal O, Thevamaran R, et al. Extreme energy dissipation via material evolution in carbon nanotube mats[J]. Advanced Science, 2021, 8: 2003142. doi: 10.1002/advs.202003142
|
| [96] |
Wang Chao, Xie Bo, Liu Yilun, et al. Mechanotunable microstructures of carbon nanotube networks[J]. ACS Macro Letters, 2012, 1(10): 1176-1179. doi: 10.1021/mz300422f
|
| [97] |
Satti A, Perret A, McCarthy J E, et al. Covalent crosslinking of single-walled carbon nanotubes with poly(allylamine) to produce mechanically robust composites[J]. Journal of Materials Chemistry, 2010, 20(37): 7941-7943. doi: 10.1039/c0jm01515f
|
| [98] |
Xie Wanting, Lee J H. Dynamics of entangled networks in ultrafast perforation of polystyrene nanomembranes[J]. Macromolecules, 2020, 53(5): 1701-1705. doi: 10.1021/acs.macromol.9b02265
|
| [99] |
Chan E P, Xie Wanting, Orski S V, et al. Entanglement density-dependent energy absorption of polycarbonate films via supersonic fracture[J]. ACS Macro Letters, 2019, 8(7): 806-811. doi: 10.1021/acsmacrolett.9b00264
|
| [100] |
Lee J H, Veysset D, Singer J P, et al. High strain rate deformation of layered nanocomposites[J]. Nature Communications, 2012, 3: 1164. doi: 10.1038/ncomms2166
|
| [101] |
Cai Jizhe, Thevamaran R. Superior energy dissipation by ultrathin semicrystalline polymer films under supersonic microprojectile impacts[J]. Nano Letters, 2020, 20(8): 5632-5638. doi: 10.1021/acs.nanolett.0c00066
|
| [102] |
Hassani-Gangaraj M, Veysset D, Nelson K A, et al. In-situ observations of single micro-particle impact bonding[J]. Scripta Materialia, 2018, 145: 9-13. doi: 10.1016/j.scriptamat.2017.09.042
|
| [103] |
Hassani-Gangaraj M, Veysset D, Champagne V K, et al. Adiabatic shear instability is not necessary for adhesion in cold spray[J]. Acta Materialia, 2018, 158: 430-439. doi: 10.1016/j.actamat.2018.07.065
|
| [104] |
Hassani M, Veysset D, Nelson K A, et al. Material hardness at strain rates beyond 106 s−1 via high velocity microparticle impact indentation[J]. Scripta Materialia, 2020, 177: 198-202. doi: 10.1016/j.scriptamat.2019.10.032
|
| [105] |
Hassani-Gangaraj M, Veysset D, Nelson K A, et al. Melt-driven erosion in microparticle impact[J]. Nature Communications, 2018, 9: 5077. doi: 10.1038/s41467-018-07509-y
|