| Citation: | Li Mu, Zhang Hongping, Chen Shi, et al. Laser driven dynamic compression of materials[J]. High Power Laser and Particle Beams, 2022, 34: 011001. doi: 10.11884/HPLPB202234.210357 |
| [1] |
Fratanduono D E, Millot M, Braun D G, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression[J]. Science, 2021, 372(6546): 1063-1068. doi: 10.1126/science.abh0364
|
| [2] |
Jeanloz R. Calibrating experiments at atom-crushing pressures[J]. Science, 2021, 372(6546): 1037-1038. doi: 10.1126/science.abi8015
|
| [3] |
Eliezer S. The interaction of high-power lasers with plasmas[J]. Plasma Physics and Controlled Fusion, 2003, 45(2): 181. doi: 10.1088/0741-3335/45/2/701
|
| [4] |
Campbell E M, Goncharov V N, Sangster T C, et al. Laser-direct-drive program: promise, challenge, and path forward[J]. Matter and Radiation at Extremes, 2017, 2(2): 37-54. doi: 10.1016/j.mre.2017.03.001
|
| [5] |
Duan Xiaoxi, Zhang Chen, Guan Zanyang, et al. Transparency measurement of lithium fluoride under laser-driven accelerating shock loading[J]. Journal of Applied Physics, 2020, 128: 015902. doi: 10.1063/5.0003869
|
| [6] |
张红平, 张黎, 罗斌强, 等. 太帕压力下声速连续测量的高精度靶制备[J]. 高压物理学报, 2020, 34:033401. (Zhang Hongping, Zhang Li, Luo Binqiang, et al. High precision targets fabrication for sound velocity measurements in terapascal pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34: 033401
|
| [7] |
王哲斌, 段晓溪, 张琛, 等. 万焦耳激光装置上多热力学路径高压加载技术实验研究[J]. 强激光与粒子束, 2020, 32:092008. (Wang Zhebin, Duan Xiaoxi, Zhang Chen, et al. Experimental research on high-pressure loading technology of multiple thermodynamic paths on 10 kJ-level laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 092008
|
| [8] |
Ng A, Pasini D, Celliers P, et al. Ablation scaling in steady-state ablation dominated by inverse-bremsstrahlung absorption[J]. Applied Physics Letters, 1984, 45(10): 1046-1048. doi: 10.1063/1.95057
|
| [9] |
Dahmani F, Kerdja T. Laser-intensity and wavelength dependence of mass-ablation rate, ablation pressure, and heat-flux inhibition in laser-produced plasmas[J]. Physical Review A, 1991, 44(4): 2649-2655. doi: 10.1103/PhysRevA.44.2649
|
| [10] |
Fratanduono D E, Boehly T R, Celliers P M, et al. The direct measurement of ablation pressure driven by 351-nm laser radiation[J]. Journal of Applied Physics, 2011, 110: 073110. doi: 10.1063/1.3646554
|
| [11] |
Xue Quanxi, Wang Zhebin, Jiang Shaoen, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014, 21: 072709. doi: 10.1063/1.4890851
|
| [12] |
Ferriter N, Maiden D E, Winslow A M, et al. Laser-beam optimization for momentum transfer by laser-supported detonation waves[J]. AIAA Journal, 1977, 15(11): 1597-1603. doi: 10.2514/3.7459
|
| [13] |
Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
|
| [14] |
Duffy T S, Smith R F. Ultra-high pressure dynamic compression of geological materials[J]. Frontiers in Earth Science, 2019, 7: 23. doi: 10.3389/feart.2019.00023
|
| [15] |
Jeanloz R, Celliers P M, Collins G W, et al. Achieving high-density states through shock-wave loading of precompressed samples[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9172-9177. doi: 10.1073/pnas.0608170104
|
| [16] |
Bradley D K, Eggert J H, Hicks D G, et al. Shock compressing diamond to a conducting fluid[J]. Physical Review Letters, 2004, 93: 195506. doi: 10.1103/PhysRevLett.93.195506
|
| [17] |
Eggert J H, Hicks D G, Celliers P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics, 2010, 6(1): 40-43. doi: 10.1038/nphys1438
|
| [18] |
Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 2004, 92: 075002. doi: 10.1103/PhysRevLett.92.075002
|
| [19] |
李牧, 孙承纬, 赵剑衡. 固体材料高功率激光斜波压缩研究进展[J]. 爆炸与冲击, 2015, 35(2):145-156. (Li Mu, Sun Chengwei, Zhao Jianheng. Progress in high-power laser ramp compression of solids[J]. Explosion and Shock Waves, 2015, 35(2): 145-156 doi: 10.11883/1001-1455(2015)02-0145-12
|
| [20] |
Smith R F, Eggert J H, Jankowski A, et al. Stiff response of aluminum under ultrafast shockless compression to 110 GPA[J]. Physical Review Letters, 2007, 98: 065701. doi: 10.1103/PhysRevLett.98.065701
|
| [21] |
Brygoo S, Millot M, Loubeyre P, et al. Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium[J]. Journal of Applied Physics, 2015, 118: 195901. doi: 10.1063/1.4935295
|
| [22] |
Brygoo S, Loubeyre P, Millot M, et al. Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions[J]. Nature, 2021, 593(7860): 517-521. doi: 10.1038/s41586-021-03516-0
|
| [23] |
Millot M, Hamel S, Rygg J R, et al. Experimental evidence for superionic water ice using shock compression[J]. Nature Physics, 2018, 14(3): 297-302. doi: 10.1038/s41567-017-0017-4
|
| [24] |
Kimura T, Ozaki N, Okuchi T, et al. Significant static pressure increase in a precompression cell target for laser-driven advanced dynamic compression experiments[J]. Physics of Plasmas, 2010, 17: 054502. doi: 10.1063/1.3381039
|
| [25] |
Crandall L E, Rygg J R, Spaulding D K, et al. Equation of state of CO2 shock compressed to 1 TPa[J]. Physical Review Letters, 2020, 125: 165701. doi: 10.1103/PhysRevLett.125.165701
|
| [26] |
Shu Hua, Li Jiangtao, Tu Yucheng, et al. Measurement of the sound velocity of shock compressed water[J]. Scientific Reports, 2021, 11: 6116. doi: 10.1038/s41598-021-84978-0
|
| [27] |
Kraus D, Vorberger J, Pak A, et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions[J]. Nature Astronomy, 2017, 1(9): 606-611. doi: 10.1038/s41550-017-0219-9
|
| [28] |
Jeanloz R. Shock wave equation of state and finite strain theory[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B5): 5873-5886. doi: 10.1029/JB094iB05p05873
|
| [29] |
Jeanloz R. Universal equation of state[J]. Physical Review B, 1988, 38(1): 805-807. doi: 10.1103/PhysRevB.38.805
|
| [30] |
Jeanloz R. Finite-strain equation of state for high-pressure phases[J]. Geophysical Research Letters, 1981, 8(12): 1219-1222. doi: 10.1029/GL008i012p01219
|
| [31] |
Fu Sizu, Huang Xiuguang, Ma Minxun, et al. Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hugoniot data of Cu up to ~ 2.24TPa with high precision[J]. Journal of Applied Physics, 2007, 101: 043517. doi: 10.1063/1.2538097
|
| [32] |
Manuel A M, Millot M, Seppala L G, et al. Upgrades to the VISAR-streaked optical pyrometer (SOP) system on NIF[C]//Proceedings of SPIE 9591, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion IV. 2015: 959104.
|
| [33] |
Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
|
| [34] |
Weng Jidong, Wang Xiang, Ma Yun, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser[J]. Review of Scientific Instruments, 2008, 79: 113101. doi: 10.1063/1.3020700
|
| [35] |
Tao Tianjiong, Liu Shenggang, Ma Heli, et al. Twiddle factor neutralization method for heterodyne velocimetry[J]. Review of Scientific Instruments, 2014, 85: 013101. doi: 10.1063/1.4859598
|
| [36] |
Luo Binqiang, Li Mu, Wang Guiji, et al. Strain rate and hydrostatic pressure effects on strength of iron[J]. Mechanics of Materials, 2017, 114: 142-146. doi: 10.1016/j.mechmat.2017.08.001
|
| [37] |
Grant S C, Ao T, Seagle C T, et al. Equation of state measurements on iron near the melting curve at planetary core conditions by shock and ramp compressions[J]. Journal of Geophysical Research: Solid Earth, 2021, 126: e2020JB020008.
|
| [38] |
Park H S, Ali S J M, Celliers P M, et al. Techniques for studying materials under extreme states of high energy density compression[J]. Physics of Plasmas, 2021, 28: 060901. doi: 10.1063/5.0046199
|
| [39] |
Prisbrey S T, Park H S, Remington B A, et al. Tailored ramp-loading via shock release of stepped-density reservoirs[J]. Physics of Plasmas, 2012, 19: 056311. doi: 10.1063/1.3699361
|
| [40] |
Löwer T, Kondrashov V N, Basko M, et al. Reflectivity and optical brightness of laser-induced shocks in silicon[J]. Physical Review Letters, 1998, 80(18): 4000-4003. doi: 10.1103/PhysRevLett.80.4000
|
| [41] |
Ng A, Ao T. Nonequilibrium and non-steady-state evolution of a shock state[J]. Physical Review Letters, 2003, 91: 035002. doi: 10.1103/PhysRevLett.91.035002
|
| [42] |
Lee P A, Citrin P H, Eisenberger P, et al. Extended X-ray absorption fine structure—its strengths and limitations as a structural tool[J]. Reviews of Modern Physics, 1981, 53(4): 769-806. doi: 10.1103/RevModPhys.53.769
|
| [43] |
Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 2008, 15: 062703. doi: 10.1063/1.2938749
|
| [44] |
Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 2005, 12: 092703. doi: 10.1063/1.2036887
|
| [45] |
Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti[J]. Physical Review Letters, 2004, 92: 095504. doi: 10.1103/PhysRevLett.92.095504
|
| [46] |
Brown F L H, Wilson K R, Cao Jianshu. Ultrafast extended X-ray absorption fine structure (EXAFS)--theoretical considerations[J]. The Journal of Chemical Physics, 1999, 111(14): 6238-6246. doi: 10.1063/1.479928
|
| [47] |
Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Physical Review Letters, 2013, 111: 065501. doi: 10.1103/PhysRevLett.111.065501
|
| [48] |
Voigt K, Zhang M, Ramakrishna K, et al. Demonstration of an X-ray Raman spectroscopy setup to study warm dense carbon at the high energy density instrument of European XFEL[J]. Physics of Plasmas, 2021, 28: 082701. doi: 10.1063/5.0048150
|
| [49] |
Millot M. Identifying and discriminating phase transitions along decaying shocks with line imaging Doppler interferometric velocimetry and streaked optical pyrometry[J]. Physics of Plasmas, 2016, 23: 014503. doi: 10.1063/1.4940942
|
| [50] |
Millot M, Dubrovinskaia N, Černok A, et al. Shock compression of stishovite and melting of silica at planetary interior conditions[J]. Science, 2015, 347(6220): 418-420. doi: 10.1126/science.1261507
|
| [51] |
Spaulding D K, Mcwilliams R S, Jeanloz R, et al. Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions[J]. Physical Review Letters, 2012, 108: 065701. doi: 10.1103/PhysRevLett.108.065701
|
| [52] |
Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 2006, 97: 025502. doi: 10.1103/PhysRevLett.97.025502
|
| [53] |
McCoy C A, Marshall M C, Polsin D N, et al. Hugoniot, sound velocity, and shock temperature of MgO to 2300 GPa[J]. Physical Review B, 2019, 100: 014106. doi: 10.1103/PhysRevB.100.014106
|
| [54] |
Roycroft R, Bowers B, Smith H, et al. Streaked optical pyrometer for proton-driven isochoric heating experiments of solid and foam targets[J]. AIP Advances, 2020, 10: 045220. doi: 10.1063/1.5121538
|
| [55] |
Gregor M C, Boni R, Sorce A, et al. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials[J]. Review of Scientific Instruments, 2016, 87: 114903. doi: 10.1063/1.4968023
|
| [56] |
Miller J E, Boehly T R, Melchior A, et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA[J]. Review of Scientific Instruments, 2007, 78: 034903. doi: 10.1063/1.2712189
|
| [57] |
Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 2009, 102: 075503. doi: 10.1103/PhysRevLett.102.075503
|
| [58] |
Yoo C S, Holmes N C, Ross M, et al. Shock temperatures and melting of iron at Earth core conditions[J]. Physical Review Letters, 1993, 70(25): 3931-3934. doi: 10.1103/PhysRevLett.70.3931
|
| [59] |
Li Jun, Wu Qiang, Li Jiabo, et al. Shock melting curve of iron: a consensus on the temperature at the Earth's inner core boundary[J]. Geophysical Research Letters, 2020, 47: e2020GL087758.
|
| [60] |
Krygier A, Coppari F, Kemp G E, et al. Developing a high-flux, high-energy continuum backlighter for extended X-ray absorption fine structure measurements at the National Ignition Facility[J]. Review of Scientific Instruments, 2018, 89: 10F114. doi: 10.1063/1.5038669
|
| [61] |
Krygier A, Kemp G E, Coppari F, et al. Optimized continuum X-ray emission from laser-generated plasma[J]. Applied Physics Letters, 2020, 117: 251106. doi: 10.1063/5.0033629
|
| [62] |
Albert F, Lemos N, Shaw J L, et al. Betatron X-ray radiation in the self-modulated laser wakefield acceleration regime: prospects for a novel probe at large scale laser facilities[J]. Nuclear Fusion, 2019, 59: 032003. doi: 10.1088/1741-4326/aad058
|
| [63] |
Stoupin S, Thorn D B, Ose N, et al. The multi-optics high-resolution absorption X-ray spectrometer (HiRAXS) for studies of materials under extreme conditions[J]. Review of Scientific Instruments, 2021, 92: 053102. doi: 10.1063/5.0043685
|
| [64] |
Milathianaki D, Boutet S, Williams G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter[J]. Science, 2013, 342(6155): 220-223. doi: 10.1126/science.1239566
|
| [65] |
Wehrenberg C E, Mcgonegle D, Bolme C, et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics[J]. Nature, 2017, 550(7677): 496-499. doi: 10.1038/nature24061
|
| [66] |
Lazicki A, McGonegle D, Rygg J R, et al. Metastability of diamond ramp-compressed to 2 terapascals[J]. Nature, 2021, 589(7843): 532-535. doi: 10.1038/s41586-020-03140-4
|
| [67] |
Briggs R, Coppari F, Gorman M G, et al. Measurement of body-centered cubic gold and melting under shock compression[J]. Physical Review Letters, 2019, 123: 045701. doi: 10.1103/PhysRevLett.123.045701
|
| [68] |
Fratanduono D E, Smith R F, Ali S J, et al. Probing the solid phase of noble metal copper at terapascal conditions[J]. Physical Review Letters, 2020, 124: 015701. doi: 10.1103/PhysRevLett.124.015701
|
| [69] |
Millot M, Coppari F, Rygg J R, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice[J]. Nature, 2019, 569(7755): 251-255. doi: 10.1038/s41586-019-1114-6
|
| [70] |
Wang Jue, Coppari F, Smith R F, et al. X-ray diffraction of molybdenum under ramp compression to 1 TPa[J]. Physical Review B, 2016, 94: 104102. doi: 10.1103/PhysRevB.94.104102
|
| [71] |
Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the α-ε transition in shock-compressed iron via nanosecond X-ray diffraction[J]. Physical Review Letters, 2005, 95: 075502. doi: 10.1103/PhysRevLett.95.075502
|
| [72] |
李俊, 陈小辉, 吴强, 等. 基于原位X射线衍射技术的动态晶格响应测量方法研究[J]. 物理学报, 2017, 66:136101. (Li Jun, Chen Xiaohui, Wu Qiang, et al. Experimental investigation on dynamic lattice response by in-situ Xray diffraction method[J]. Acta Physica Sinica, 2017, 66: 136101 doi: 10.7498/aps.66.136101
|
| [73] |
Suggit M, Kimminau G, Hawreliak J, et al. Nanosecond X-ray Laue diffraction apparatus suitable for laser shock compression experiments[J]. Review of Scientific Instruments, 2010, 81: 083902. doi: 10.1063/1.3455211
|
| [74] |
Comley A J, Maddox B R, Rudd R E, et al. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband X-ray Laue diffraction[J]. Physical Review Letters, 2013, 110: 115501. doi: 10.1103/PhysRevLett.110.115501
|
| [75] |
Suggit M J, Higginbotham A, Hawreliak J A, et al. Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper[J]. Nature Communications, 2012, 3: 1224. doi: 10.1038/ncomms2225
|
| [76] |
Cerantola V, Rosa A D, Konôpková Z, et al. New frontiers in extreme conditions science at synchrotrons and free electron lasers[J]. Journal of Physics:Condensed Matter, 2021, 33: 274003. doi: 10.1088/1361-648X/abfd50
|
| [77] |
Shen Guoyin, Wang Yanbin, Dewaele A, et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020)[J]. High Pressure Research, 2020, 40(3): 299-314. doi: 10.1080/08957959.2020.1791107
|
| [78] |
Celliers P M, Millot M, Brygoo S, et al. Insulator-metal transition in dense fluid deuterium[J]. Science, 2018, 361(6403): 677-682. doi: 10.1126/science.aat0970
|
| [79] |
Desjarlais M P, Knudson M D, Redmer R. Comment on “Insulator-metal transition in dense fluid deuterium”[J]. Science, 2019, 363: eaaw0969. doi: 10.1126/science.aaw0969
|
| [80] |
Knudson M D, Desjarlais M P, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium[J]. Science, 2015, 348(6242): 1455-1460. doi: 10.1126/science.aaa7471
|
| [81] |
Stevenson D J. Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures[J]. Physical Review B, 1975, 12(10): 3999-4007. doi: 10.1103/PhysRevB.12.3999
|
| [82] |
Mankovich C R, Fortney J J. Evidence for a dichotomy in the interior structures of Jupiter and Saturn from helium phase separation[J]. The Astrophysical Journal, 2020, 889: 51. doi: 10.3847/1538-4357/ab6210
|
| [83] |
Schöttler M, Redmer R. Ab initio calculation of the miscibility diagram for hydrogen-helium mixtures[J]. Physical Review Letters, 2018, 120: 115703. doi: 10.1103/PhysRevLett.120.115703
|
| [84] |
Morales M A, Hamel S, Caspersen K, et al. Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors[J]. Physical Review B, 2013, 87: 174105. doi: 10.1103/PhysRevB.87.174105
|
| [85] |
Li Liming, Jiang Xun, West R A, et al. Less absorbed solar energy and more internal heat for Jupiter[J]. Nature Communications, 2018, 9: 3709. doi: 10.1038/s41467-018-06107-2
|
| [86] |
Liu Shangfei, Hori Y, Müller S, et al. The formation of Jupiter’s diluted core by a giant impact[J]. Nature, 2019, 572(7769): 355-357. doi: 10.1038/s41586-019-1470-2
|
| [87] |
Nettelmann N, Helled R, Fortney J J, et al. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data[J]. Planetary and Space Science, 2013, 77: 143-151. doi: 10.1016/j.pss.2012.06.019
|
| [88] |
Stevenson D J. Formation of the giant planets[J]. Planetary and Space Science, 1982, 30(8): 755-764. doi: 10.1016/0032-0633(82)90108-8
|
| [89] |
Cavazzoni C, Chiarotti G L, Scandolo S, et al. Superionic and metallic states of water and ammonia at giant planet conditions[J]. Science, 1999, 283(5398): 44-46. doi: 10.1126/science.283.5398.44
|
| [90] |
Umemoto K, Wentzcovitch R M, Allen P B. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets[J]. Science, 2006, 311(5763): 983-986. doi: 10.1126/science.1120865
|
| [91] |
Mazevet S, Tsuchiya T, Taniuchi T, et al. Melting and metallization of silica in the cores of gas giants, ice giants, and super Earths[J]. Physical Review B, 2015, 92: 014105. doi: 10.1103/PhysRevB.92.014105
|
| [92] |
Sugimura E, Komabayashi T, Ohta K, et al. Experimental evidence of superionic conduction in H2O ice[J]. The Journal of Chemical Physics, 2012, 137: 194505. doi: 10.1063/1.4766816
|
| [93] |
Demontis P, LeSar R, Klein M L. New high-pressure phases of ice[J]. Physical Review Letters, 1988, 60(22): 2284-2287. doi: 10.1103/PhysRevLett.60.2284
|
| [94] |
Knudson M D, Desjarlais M P, Lemke R W, et al. Probing the interiors of the ice giants: shock compression of water to 700 GPa and 3.8 g/cm3[J]. Physical Review Letters, 2012, 108: 091102. doi: 10.1103/PhysRevLett.108.091102
|
| [95] |
Celliers P M, Collins G W, Hicks D G, et al. Electronic conduction in shock-compressed water[J]. Physics of Plasmas, 2004, 11(8): L41-L44. doi: 10.1063/1.1758944
|
| [96] |
Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 2014, 511(7509): 330-333. doi: 10.1038/nature13526
|
| [97] |
Hicks D G, Boehly T R, Celliers P M, et al. High-precision measurements of the diamond Hugoniot in and above the melt region[J]. Physical Review B, 2008, 78: 174102. doi: 10.1103/PhysRevB.78.174102
|
| [98] |
Gregor M C, Fratanduono D E, McCoy C A, et al. Hugoniot and release measurements in diamond shocked up to 26 Mbar[J]. Physical Review B, 2017, 95: 144114. doi: 10.1103/PhysRevB.95.144114
|
| [99] |
Wang Peng, Zhang Chen, Jiang Shaoen, et al. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF[J]. Matter and Radiation at Extremes, 2021, 6: 035902. doi: 10.1063/5.0039062
|
| [100] |
McWilliams R S, Spaulding D K, Eggert J H, et al. Phase transformations and metallization of magnesium oxide at high pressure and temperature[J]. Science, 2012, 338(6112): 1330-1333. doi: 10.1126/science.1229450
|
| [101] |
Coppari F, Smith R F, Eggert J H, et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures[J]. Nature Geoscience, 2013, 6(11): 926-929. doi: 10.1038/ngeo1948
|
| [102] |
Root S, Townsend J P, Knudson M D. Shock compression of fused silica: an impedance matching standard[J]. Journal of Applied Physics, 2019, 126: 165901. doi: 10.1063/1.5126205
|
| [103] |
Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12: 082702. doi: 10.1063/1.2009528
|
| [104] |
Knudson M D, Desjarlais M P. Adiabatic release measurements in α-quartz between 300 and 1200 GPa: characterization of α-quartz as a shock standard in the multimegabar regime[J]. Physical Review B, 2013, 88: 184107. doi: 10.1103/PhysRevB.88.184107
|
| [105] |
Knudson M D, Desjarlais M P. Shock compression of quartz to 1.6 TPa: redefining a pressure standard[J]. Physical Review Letters, 2009, 103: 225501. doi: 10.1103/PhysRevLett.103.225501
|
| [106] |
Fratanduono D E, Millot M, Kraus R G, et al. Thermodynamic properties of MgSiO3 at super-Earth mantle conditions[J]. Physical Review B, 2018, 97: 214105. doi: 10.1103/PhysRevB.97.214105
|
| [107] |
Sekine T, Ozaki N, Miyanishi K, et al. Shock compression response of forsterite above 250 GPa[J]. Science Advances, 2016, 2: e1600157. doi: 10.1126/sciadv.1600157
|
| [108] |
Bolis R M, Morard G, Vinci T, et al. Decaying shock studies of phase transitions in MgO-SiO2 systems: implications for the super-Earths' interiors[J]. Geophysical Research Letters, 2016, 43(18): 9475-9483. doi: 10.1002/2016GL070466
|
| [109] |
Forbes J W. Shock wave compression of condensed matter: a primer[M]. Berlin, Heidelberg: Springer, 2012.
|
| [110] |
Duffy T, Madhusudhan N, Lee K K M. Mineralogy of super-earth planets[J]. Treatise on Geophysics, 2015, 2: 149-178.
|
| [111] |
Duffy T S, Ahrens T J. Sound velocities at high pressure and temperature and their geophysical implications[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4503-4520. doi: 10.1029/91JB02650
|
| [112] |
Duffy T S, Vos W L, Zha Changsheng, et al. Sound velocities in dense hydrogen and the interior of Jupiter[J]. Science, 1994, 263(5153): 1590-1593. doi: 10.1126/science.263.5153.1590
|
| [113] |
Hu Jianbo, Zhou Xianming, Dai Chengda, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements[J]. Journal of Applied Physics, 2008, 104: 083520. doi: 10.1063/1.3003325
|
| [114] |
Nissim N, Eliezer S, Werdiger M. The sound velocity throughout the P-ρ phase-space with application to laser induced shock wave in matter precompressed by a diamond anvil cell[J]. Journal of Applied Physics, 2014, 115: 213503. doi: 10.1063/1.4879855
|
| [115] |
Ohtani E, Mibe K, Sakamaki T, et al. Sound velocity measurement by inelastic X-ray scattering at high pressure and temperature by resistive heating diamond anvil cell[J]. Russian Geology and Geophysics, 2015, 56(1/2): 190-195.
|
| [116] |
McCoy C A, Knudson M D, Root S. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures[J]. Physical Review B, 2017, 96: 174109. doi: 10.1103/PhysRevB.96.174109
|
| [117] |
Li Mu, Zhang Shuai, Zhang Hongping, et al. Continuous sound velocity measurements along the shock hugoniot curve of quartz[J]. Physical Review Letters, 2018, 120: 215703. doi: 10.1103/PhysRevLett.120.215703
|
| [118] |
Fratanduono D E, Munro D H, Celliers P M, et al. Hugoniot experiments with unsteady waves[J]. Journal of Applied Physics, 2014, 116: 033517. doi: 10.1063/1.4890014
|
| [119] |
McCoy C A, Gregor M C, Polsin D N, et al. Measurements of the sound velocity of shock-compressed liquid silica to 1100 GPa[J]. Journal of Applied Physics, 2016, 120: 235901. doi: 10.1063/1.4972338
|
| [120] |
Fratanduono D E, Celliers P M, Braun D G, et al. Equation of state, adiabatic sound speed, and Gruneisen coefficient of boron carbide along the principal Hugoniot to 700 GPa[J]. Physical Review B, 2016, 94: 184107. doi: 10.1103/PhysRevB.94.184107
|
| [121] |
Henderson B J, Marshall M C, Boehly T R, et al. Shock-compressed silicon: hugoniot and sound speed up to 2100 GPa[J]. Physical Review B, 2021, 103: 094115. doi: 10.1103/PhysRevB.103.094115
|