| Citation: | Hong Yanji, Mao Chentao, Feng Xiaohui. Status and progress of pulsed laser ablation propulsion technology in the field of aerospace[J]. High Power Laser and Particle Beams, 2022, 34: 011002. doi: 10.11884/HPLPB202234.210275 |
| [1] |
Kantrowitz A. Propulsion to orbit by ground-based lasers[J]. Astronautics and Aeronautics, 1972, 10(5): 74-76.
|
| [2] |
Pirri A N, Weiss R F. Laser propulsion[C]//AIAA 5th Fluid and Plasma Dynamics Conference. Boston: AIAA, 1972.
|
| [3] |
Phipps C, Birkan M, Bohn W, et al. Review: laser-ablation propulsion[J]. Journal of Propulsion and Power, 2010, 26(4): 609-637. doi: 10.2514/1.43733
|
| [4] |
张楠, 徐智君, 朱晓农, 等. 激光推进技术[J]. 红外与激光工程, 2011, 40(6):1025-1037. (Zhang Nan, Xu Zhijun, Zhu Xiaonong, et al. Laser propulsion technology[J]. Infrared and Laser Engineering, 2011, 40(6): 1025-1037 doi: 10.3969/j.issn.1007-2276.2011.06.009
|
| [5] |
谭胜, 吴建军, 张宇, 等. 激光支持的空间微推进技术研究进展[J]. 推进技术, 2018, 39(11):2415-2428. (Tan Sheng, Wu Jianjun, Zhang Yu, et al. Research progress of laser-supported space micropropulsion technology[J]. Journal of Propulsion Technology, 2018, 39(11): 2415-2428
|
| [6] |
洪延姬, 金星, 李小将, 等. 临近空间飞行器技术[M]. 北京: 国防工业出版社, 2012.
Hong Yanji, Jin Xing, Li Xiaojiang, et al. Near space vehicle technology[M]. Beijing: National Defense Industry Press, 2012
|
| [7] |
洪延姬, 李倩, 王殿恺, 等. 超声速飞行器的激光空气锥减阻方法[M]. 北京: 科学出版社, 2016.
Hong Yanji, Li Qian, Wang Diankai, et al. Laser air cone drag reduction method for supersonic aircraft[M]. Beijing: Science Press, 2016
|
| [8] |
洪延姬, 金星, 崔村燕, 等. 先进航天推进技术[M]. 北京: 国防工业出版社, 2012.
Hong Yanji, Jin Xing, Cui Cunyan, et al. Advanced space propulsion technology[M]. Beijing: National Defense Industry Press, 2012
|
| [9] |
洪延姬, 金星, 李倩, 等. 吸气式脉冲激光推进导论[M]. 北京: 国防工业出版社, 2012.
Hong Yanji, Jin Xing, Li Qian, et al. Introduction to inspiratory pulsed laser propulsion[M]. Beijing: National Defense Industry Press, 2012
|
| [10] |
Myrabo L N, Messitt D G, Mead F B Jr. Ground and flight tests of a laser propelled vehicle[C]//36th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV: AIAA, 1998.
|
| [11] |
Phipps C, Bonnal C, Masson F, et al. Launching swarms of microsatellites using a 100 kW average power pulsed laser[J]. Journal of the Optical Society of America B, 2018, 35(10): B20-B26. doi: 10.1364/JOSAB.35.000B20
|
| [12] |
Phipps C R, Bonnal C, Masson F, et al. Transfers from Earth to LEO and LEO to interplanetary space using lasers[J]. Acta Astronautica, 2018, 146: 92-102. doi: 10.1016/j.actaastro.2018.02.018
|
| [13] |
Phipps C R, Boustie M, Chevalier J M, et al. Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength[J]. Journal of Applied Physics, 2017, 122: 193103. doi: 10.1063/1.4997196
|
| [14] |
Phipps C R, Reilly J P, Campbell J W. Optimum parameters for laser launching objects into low earth orbit[J]. Laser and Particle Beams, 2000, 18(4): 661-695. doi: 10.1017/S0263034600184101
|
| [15] |
Phipps C R, Luke J R, Helgeson W, et al. Performance test results for the laser-powered microthruster[J]. AIP Conference Proceedings, 2006, 830(1): 224-234.
|
| [16] |
Phipps C R, Luke J R, Helgeson W, et al. A ns-pulse laser microthruster[J]. AIP Conference Proceedings, 2006, 830(1): 235-246.
|
| [17] |
Horisawa H, Igari A, Kawakami M, et al. Discharge characteristics of laser-electric hybrid thrusters[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004.
|
| [18] |
Horisawa H, Kawakami M, Kimura I, et al. Laser-assisted pulsed plasma thruster for space propulsion applications[J]. Applied Physics A, 2005, 81(2): 303-310. doi: 10.1007/s00339-005-3210-8
|
| [19] |
Ono T, Uchida Y, Horisawa H, et al. Measurement of ion acceleration characteristics of a laser-electrostatic hybrid microthruster for space propulsion applications[J]. Vacuum, 2008, 83(1): 213-216. doi: 10.1016/j.vacuum.2008.03.098
|
| [20] |
Osamura A, Sakai T, Horisawa H. Development of a laser-electrostatic hybrid acceleration thruster[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: AIAA, 2014.
|
| [21] |
Horisawa H, Sasaki Y, Funaki I, et al. Electromagnetic acceleration characteristics for a laser-electric hybrid thruster[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford: AIAA, 2008.
|
| [22] |
Horisawa H, Mashima Y, Yamada O, et al. High ISP mechanism of rectangular laser-electromagnetic hybrid acceleration thruster[C]//32nd International Electric Propulsion Conference. Wiesbaden, 2011.
|
| [23] |
Akashi N, Oigawa Y, Hosokawa H, et al. Plasma acceleration characteristic of a rectangular laser-electromagnetic hybrid thruster[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: AIAA, 2014.
|
| [24] |
Phipps C R, Albrecht G, Friedman H, et al. ORION: clearing near-earth space debris using a 20-kW, 530-nm, earth-based, repetitively pulsed laser[J]. Laser and Particle Beams, 1996, 14(1): 1-44. doi: 10.1017/S0263034600009733
|
| [25] |
Phipps C R, Baker K L, Libby S B, et al. Removing orbital debris with lasers[J]. Advances in Space Research, 2012, 49(9): 1283-1300. doi: 10.1016/j.asr.2012.02.003
|
| [26] |
Campbell J W. Project ORION: orbital debris removal using ground-based sensors and lasers[R]. Washington: NASA, 1996.
|
| [27] |
Phipps C, Reilly P. ORION: clearing near-earth space debris in two years using a 30 kW repetitively pulsed laser[C]//Proceedings of SPIE 3092, XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. 1997: 728-731.
|
| [28] |
Schall W O. Laser radiation for cleaning space debris from lower earth orbit[J]. Journal of Spacecraft and Rocket, 2002, 39(1): 81-91. doi: 10.2514/2.3785
|
| [29] |
路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39:021302. (Lu Yong, Liu Xiaoguang, Zhou Yu, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronauticaet Astronautica Sinica, 2018, 39: 021302
|
| [30] |
Kumar R, Sedwick R J. Despinning orbital debris before docking using laser ablation[J]. Journal of Spacecraft and Rocket, 2015, 52(4): 1129-1134. doi: 10.2514/1.A33183
|
| [31] |
洪延姬, 金星, 王广宇, 等. 激光清除空间碎片方法[M]. 北京: 国防工业出版社, 2013.
Hong Yanji, Jin Xing, Wang Guangyu, et al. Laser method for removing space debris[M]. Beijing: National Defense Industry Press, 2013
|
| [32] |
洪延姬, 金星, 叶继飞, 等. 天基激光烧蚀操控空间碎片方法[M]. 北京: 科学出版社, 2020.
Hong Yanji, Jin Xing, Ye Jifei, et al. Space-based laser ablation method for manipulating space debris[M]. Beijing: Science Press, 2016
|
| [33] |
Vasile M, Gibbings A, Watson I, et al. Improved laser ablation model for asteroid deflection[J]. Acta Astronautica, 2014, 103: 382-394. doi: 10.1016/j.actaastro.2014.01.033
|
| [34] |
Phipps C. Can lasers play a rôle in planetary defense?[J]. AIP Conference Proceedings, 2010, 1278(1): 502-508.
|
| [35] |
Vasile M, Maddock C A. Design of a formation of solar pumped lasers for asteroid deflection[J]. Advances in Space Research, 2012, 50(7): 891-905. doi: 10.1016/j.asr.2012.06.001
|
| [36] |
Maddock C, Vasile M, Summerer L. Conceptual design of a multi-mirror system for asteroid deflection[C]//27th International Symposium on Space Technology and Science. 2009: 1-5.
|
| [37] |
Gibbings A, Vasile M, Watson I, et al. Experimental analysis of laser ablated plumes for asteroid deflection and exploitation[J]. Acta Astronautica, 2013, 90(1): 85-97. doi: 10.1016/j.actaastro.2012.07.008
|
| [38] |
Zhang Qicheng, Walsh K J, Melis C, et al. Orbital simulations for directed energy deflection of near-earth asteroids[J]. Procedia Engineering, 2015, 103: 671-678. doi: 10.1016/j.proeng.2015.04.087
|
| [39] |
Thiry N, Vasile M. Recent advances in laser ablation modelling for asteroid deflection methods[C]//Proceedings of SPIE 9226, Nanophotonics and Macrophotonics for Space Environments VIII. 2014: 922608.
|
| [40] |
Vasile M, Nicolas T. LightTouch3: a demo mission to test laser ablation for asteroid manipulation and exploitation[C]//15th Reinventing Space Conference. Glasgow, UK, 2017.
|
| [41] |
Sloane J B, Sedwick R J. Direct force measurement of pulsed laser ablation of asteroid simulants[J]. Journal of Propulsion and Power, 2020, 36(4): 551-559. doi: 10.2514/1.B37566
|