Volume 34 Issue 6
Apr.  2022
Turn off MathJax
Article Contents
Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004. doi: 10.11884/HPLPB202234.210360
Citation: Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004. doi: 10.11884/HPLPB202234.210360

Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch

doi: 10.11884/HPLPB202234.210360
  • Received Date: 2021-08-20
  • Accepted Date: 2022-01-24
  • Rev Recd Date: 2021-12-31
  • Available Online: 2022-02-14
  • Publish Date: 2022-06-15
  • Photoconductive switch can be used in high power microwave system. The breakdown resistance field strength of SiC photoconductive switches is mainly limited by packaging. The packaging method cannot effectively solve the problem of electric field accumulation when the copper electrode leaves the SiC substrate, which leads to the application field strength of SiC far lower than the breakdown resistance strength of SiC crystal. The effects of the structure of the electrode and the connection structure of SiC to the electrode on the interfacial field intensity are studied. The electric field enhancement at the interface is reduced by optimizing the edge of the electrode and the SiC crystal structure. The breakdown voltage of optimized electrode structure is tested. The results show that the electric field enhancement can be effectively reduced by optimizing the electrode chamfering and burying under the interface between SiC crystal and electrode. Under the structure of circular chamfering and interface connecting with solder, the SiC photoconductive switch breaks down at the voltage of 22 kV.
  • loading
  • [1]
    张永平. 碳化硅光导开关的制备与性能研究[D]. 上海: 上海师范大学, 2014: 10-40

    Zhang Yongping. Preparation and properties of SiC photoconductive switch[D]. Shanghai: Shanghai Normal University, 2014: 10-40
    [2]
    Cui H, Yang H, Xu J, et al. Sublinear current-voltage characteristics of linear photoconductive semiconductor switch[J]. IEEE Electr Device L, 2016: 1-1.
    [3]
    宋朝阳. 半绝缘4H-SiC光导开关研究[D]. 西安: 西安电子科技大学, 2015: 20-30

    Song Chaoyang. Study on semi-insulating 4H-SiC PCSS[D]. Xian: Xidian University, 2015: 20-30
    [4]
    Cao P, Huang W, Guo H, et al. Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector[J]. IEEE T Electron Dev, 2018, 65(5): 2047-2051. doi: 10.1109/TED.2018.2815634
    [5]
    Daniel M, William S, Alan B, et al. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms[J]. IEEE T Plasma Sci, 2015, 43(6): 2021-2031. doi: 10.1109/TPS.2015.2424154
    [6]
    Sampayan S, Bora M, Brooksby C, et al. High voltage wide bandgap photoconductive switching[J]. Mater Sci Forum, 2015, 821-823: 871-874. doi: 10.4028/www.scientific.net/MSF.821-823.871
    [7]
    Suproniuk M, Kaminski P, Pawlowski M, et al. Current status of modelling the semi-insulating 4H-SiC transient photoconductivity for application to photoconductive switches[J]. Opto-Electron. Rev, 2017, 25(3): 171-180. doi: 10.1016/j.opelre.2017.03.006
    [8]
    董妍. 高功率光导开关的研究[D]. 成都: 电子科技大学, 2018: 10-30

    Dong Yan. Research on high power photoconductive semiconductor switch[D]. Chengdu: University of Electronic Science and Technology, 2018: 10-30.
    [9]
    Majda E, Suproniuk M, Pawlowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electron Rev, 2018, 26: 92-102. doi: 10.1016/j.opelre.2018.02.003
    [10]
    许世峰, 何晓雄, 孙飞翔. 光导开关欧姆接触电阻率测量方法研究[J]. 合肥工业大学学报(自然科学版), 2016, 39(7):929-933. (Xu Shifeng, He Xiaoxiong, Sun Feixiang. Research on measurement methods of ohmic contact resistivity of PCSS[J]. Journal of Heifei University of Techonology (Natural Science), 2016, 39(7): 929-933
    [11]
    Hettler C, James C, Dickens J. High electric field packaging of silicon carbide photoconductive switches[C]//Proc of PPC. 2009.
    [12]
    Fessler C, Kelkar K, Nunnally W, et al. Investigation of high electric fields at the electrode-SiC interface in photo-switches[C]//Proc of PPC. 2008.
    [13]
    曹鹏辉. 采用透明电极的垂直型4H-SiC光导开关的研究[D]. 西安: 西安电子科技大学, 2017: 20-40

    Cao Penghui. Research on vertical 4H-SiC PCSS with transparent electrode[D]. Xian: Xidian University, 2017: 20-40
    [14]
    Sullivan J. High power operation of a nitrogen doped, vanadium compensated, 6H-SiC extrinsic photoconductive switch[J]. Appl Phys Lett, 2014, 104(17): 172106. doi: 10.1063/1.4875258
    [15]
    章林文, 夏连胜, 谌怡, 等. 介质壁加速器关键技术[J]. 高电压技术, 2015, 41(6):1769-1775. (Zhang Linwen, Xis Liansheng, Shen Yi, et al. Technologies of dielectric wall accelerator[J]. High Voltage Engineering, 2015, 41(6): 1769-1775
    [16]
    James C, Hettler C, Dickens J. High-purity semi-insulating 4H-SiC as a high-voltage switch material[C]//Proc of IPMC. 2010.
    [17]
    董妍. 高功率光导开关的研究[D]. 成都: 电子科技大学, 2018: 1-11

    Dong Yan. Research on high power photoconductive semiconductor switch[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 1-11
    [18]
    刘金进. 碳化硅光导开关耐压结构设计与仿真研究[D]. 上海: 上海师范大学, 2021: 6-12

    Liu Jinjin. Design and simulation of silicon carbide photoconductive semiconductor switches withstanding high voltage[D]. Shanghai: Shanghai Normal University, 2021: 6-12
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (731) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return