Volume 34 Issue 9
Jun.  2022
Turn off MathJax
Article Contents
Yang Hanwu, Xun Tao, Gao Jingming, et al. Design of a vacuum interface of a microsecond timescale HPM diode with guiding magnetic field[J]. High Power Laser and Particle Beams, 2022, 34: 095002. doi: 10.11884/HPLPB202234.210472
Citation: Yang Hanwu, Xun Tao, Gao Jingming, et al. Design of a vacuum interface of a microsecond timescale HPM diode with guiding magnetic field[J]. High Power Laser and Particle Beams, 2022, 34: 095002. doi: 10.11884/HPLPB202234.210472

Design of a vacuum interface of a microsecond timescale HPM diode with guiding magnetic field

doi: 10.11884/HPLPB202234.210472
  • Received Date: 2021-11-08
  • Accepted Date: 2022-02-18
  • Rev Recd Date: 2022-01-25
  • Available Online: 2022-02-26
  • Publish Date: 2022-06-17
  • Long pulse high power pulse driver in the microsecond range is an important platform for conducting high power microwave (HPM) device studies and one of the key technologies is to prohibit surface flashover of the vacuum diode interface under the conditions of long pulse duration and the presence of guiding magnetic field. We report a design of a vacuum interface which works in the microsecond timescale with guiding magnetic field. Three measures are adopted to suppress the surface flashover. First is a cathode electron beam blocker, which intercepts the electron beam from the cathode and electron beam drift tube; Second is a grounded plate field shaper, which makes the electric field equipotential line and the interface form an angle of about 45°, so that the electrons emitted from the triple junction are directed away from the insulator; Third is a floating metal ring, which prevents the electron multiplication if emission from cathode stalk triple junction does occur. The electric field and magnetic field in the diode and the trajectory of electron beam are calculated, and the geometry of the vacuum interface is optimized. Experiments show that the vacuum interface of the diode can work at voltage of 400 kV and pulse width of 800 ns, which allows the study of long pulse high power microwave tubes.
  • loading
  • [1]
    Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter and Radiation at Extremes, 2016, 1(3): 163-178. doi: 10.1016/j.mre.2016.04.001
    [2]
    杨汉武, 高景明, 张自成, 等. 基于MOV的800纳秒吉瓦级脉冲驱动源[C]//第七届全国脉冲功率会议. 重庆, 2021

    Yang Hanwu, Gao Jingming, Zhang Zicheng, et al. Test of an 800 ns gigawatt pulse generator based on metal-oxide varistors[C]//Proceedings of the 7th China Pulsed Power Conference. Chongqing, 2021
    [3]
    Wang Hongguang, Zhang Jianwei, Li Yongdong, et al. 2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum[J]. Physics of Plasmas, 2018, 25: 043522. doi: 10.1063/1.5021177
    [4]
    Xun Tao, Yang Hanwu, Zhang Jiande. A high-vacuum high-electric-field pulsed power interface based on a ceramic insulator[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4130-4135. doi: 10.1109/TPS.2015.2497276
    [5]
    Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657. doi: 10.1109/TDEI.2015.004702
    [6]
    Miller H C. Flashover of insulators in vacuum: review of the phenomena and techniques to improved holdoff voltage[J]. IEEE Transactions on Electrical Insulation, 1993, 28(4): 512-527. doi: 10.1109/14.231534
    [7]
    Krasik Y E, Leopold J G. Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination[J]. Physics of Plasmas, 2015, 22: 083109. doi: 10.1063/1.4928580
    [8]
    Harris J R. A tutorial on vacuum surface flashover[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 1872-1880. doi: 10.1109/TPS.2017.2759248
    [9]
    Harris J R, Caporaso G J, Blackfield D, et al. Displacement current and surface flashover[J]. Applied Physics Letters, 2007, 91: 121504. doi: 10.1063/1.2785116
    [10]
    Gleizer J Z, Krasik Y E, Dai U, et al. Vacuum surface flashover: experiments and simulations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(5): 2394-2404. doi: 10.1109/TDEI.2014.004628
    [11]
    Smith I D. Flashover of vacuum interfaces with many stages and large transit times[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 293-299. doi: 10.1109/27.602502
    [12]
    Sun Xiaoliang, Xun Tao, Zhong Huihuang, et al. Characterization of flashover plasma across a large-scale ceramic vacuum interface initiated by explosive electron emission[J]. AIP Advances, 2018, 8: 075309. doi: 10.1063/1.5039434
    [13]
    刘瑜, 邓建军, 王勐, 等. 外加磁场下真空沿面闪络特性数值模拟[J]. 强激光与粒子束, 2010, 22(10):2501-2504. (Liu Yu, Deng Jianjun, Wang Meng, et al. Numerical simulation of vacuum surface flashover under applied magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(10): 2501-2504 doi: 10.3788/HPLPB20102210.2501

    Liu Yu, Deng Jianjun, Wang Meng, et al. Numerical simulation of vacuum surface flashover under applied magnetic field[J]. High Power Laser and Particle Beams, 2010, 22(10): 2501-2504 doi: 10.3788/HPLPB20102210.2501
    [14]
    Savage M E, Stoltzfus B S, Austin K N, et al. Performance of a radial vacuum insulator stack[C]//Proceedings of 2015 IEEE Pulsed Power Conference. 2015: 1-6.
    [15]
    Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J]. Laser and Particle Beams, 2003, 21(2): 197-209. doi: 10.1017/S0263034603212076
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (644) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return